1,214 research outputs found

    The complementary role of imaging and tumor biomarkers in gynecological cancers: an update of the literature

    Get PDF
    Gynecological tumors, including endometrial, cervical and ovarian cancer, have increased in incidence over time. The widespread introduction of screening programs and advances in diagnostic imaging methods has lead to a progressive increase in gynecological cancer detection. Accurate diagnosis and proper monitoring of disease remain the primary target for a successful treatment. In the last years, knowledge about cancer biomarkers has considerably increased providing great opportunities for improving cancer detection and treatment. In addition, in the last few years there has been an important development of imaging techniques. Nowadays, a multimodal approach including the evaluation of serum tumor biomarkers combined with imaging techniques, seems to be the best strategy for assessing tumor presence, spread, recurrence, and/or the response to treatment in female cancer patients In this review we provide an overview of the application of biomarkers combined with novel imaging methods and highlight their roles in female cancer diagnosis and follow-up

    Neuroprotection by Drugs, Nutraceuticals and Physical Activity

    Get PDF
    Acute and chronic neural injuries, including stroke, brain trauma and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with high morbidity and mortality rates [...]

    A new formulation of the Gram-Charlier method: Performance for fitting non-normal distribution

    Get PDF
    The Gram-Charlier expansion was derived in an attempt to express non-normal densities as infinite series involving the normal density and its derivatives, using the moments data as input terms. In classic Gram-Charlier expansion the random variable is standardized, so that the Gaussian parameters are Always fixed and referred to the mean equal to zero and to the standard deviation equal to one. This assumption seems to be too strong. An improvement of Gram-Charlier expansion was obtained by an optimization process, directed to choose new values of Gaussian parameters. In order to check the performance of the new approach, an estimate of the gamma probability density function was calculated. Two probability density functions, characterized by a different degree of skewness and kurtosis, were considered. The study has shown that in comparison with the classic assumption, the new one always gives the best results in terms of probability density function reproducibility and allows the best evaluation of the input moments. Further the comparison between estimated moments of order higher than the input ones and the theoretical moments shows a good reproduction. Finally the method seems to suggest that a less restrictive condition can be considered respect to the usual convergence criterium of the Gram-Charlier expansion

    55Mn NMR and magnetization studies of La0.67Sr0.33MnO3 thin films

    Full text link
    55Mn nuclear magnetic resonance and magnetization studies of the series of La0.67Sr0.33MnO3 thin films have been performed at low temperature. Two distinct lines were observed, at 322 MHz and 380 MHz, corresponding to two different phases, the former located at the interface, with localized charges, and the latter corresponding to the film bulk, with itinerant carriers (as it was also found in Ca manganite films). The spin-echo amplitude was measured as a function of a dc magnetic field applied either in the film plane or perpendicular to it. The field dependence of both the main NMR signal intensity and frequency shift is quite consistent with that calculated in a simple single domain model. The best fit to the model shows that magnetization rotation processes play a dominant role when the applied field exceeds the effective anisotropy field. Distinctly different magnetic anisotropies are deduced from the interface NMR signal.Comment: 7 pages, 8 figure

    Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration

    Get PDF
    Spent coffee grounds (SCGs), waste products of coffee beverage production, are rich in organic compounds such as phenols. Different studies have demonstrated phenol beneficial effects in counteracting neurodegenerative diseases. These diseases are associated with oxidative stress and neuroinflammation, which initiates the degeneration of neurons by overactivating microglia. Unfortunately, to date, there are no pharmacological therapies to treat these pathologies. The aim of this study was to evaluate the phenolic content of 4 different SCG extracts and their ability to counteract oxidative stress and neuroinflammation. Caffeine and 5-O-caffeoylquinic acid were the most abundant compounds in all extracts, followed by 3-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. The four extracts demonstrated a different ability to counteract oxidative stress and neuroinflammation in vitro. In particular, the methanol extract was the most effective in protecting neuron-like SH-SY5Y cells against H2O2-induced oxidative stress by upregulating endogenous antioxidant enzymes such as thioredoxin reductase, heme oxygenase 1, NADPH quinone oxidoreductase, and glutathione reductase. The water extract was the most effective in counteracting lipopolysaccharide-induced neuroinflammation in microglial BV-2 cells by strongly reducing the expression of proinflammatory mediators through the modulation of the TLR4/NF-kappa B pathway. On these bases, SCG extracts could represent valuable nutraceutical sources for the treatment of neurodegeneratio

    Evaluation of the effectiveness of BNT162b2 primary vaccination and booster dose to SARS-CoV-2 in eliciting stable mucosal immunity

    Get PDF
    The waning effectiveness of the primary vaccination for SARS-CoV-2 led to administration of an additional booster dose (BD). The efficacy of the BD in stimulating humoral systemic immune response is well established, but its effectiveness on inducing mucosal immune reaction has not yet been reported. To address this issue, we evaluated SARS-CoV-2-specific antibody responses in the serum, saliva, and tears after BNT162b2 (Pfizer/BioNTech, New York, NY, USA) vaccination and BD, as well as after SARS-CoV-2 infection. After two doses of BNT162b2 vaccine, we observed specific serum IgG in 100% and IgA in 97.2% of subjects, associated with mucosal response in both salivary samples (sIgA in 97.2% and IgG(S) in 58.8%) and in tears (sIgA in 77.8% and IgG(S) in 67.7%). BD induced a recovery of the systemic humoral response and of tear sIgA when compared to 6 months of follow-up titers (p < 0.001; p = 0.012). However, sIgA levels in both tears and saliva were significantly lower following BD when compared to patients with prior SARS-CoV-2 infection (p = 0.001 and p = 0.005, respectively). Our results demonstrated that administration of BD restored high serum levels of both IgG and IgA but had a poor effect in stimulating mucosal immunity when compared to prior SARS-CoV-2 infection

    Spectral Emission Properties of a Nitrogen-doped Diamond(001) Photocathode: Hot Electron Transport and Transverse Momentum Filtering

    Full text link
    The electron emission properties of a single-crystal nitrogen-doped diamond(001) photocathode inserted in a 10kV DC photoelectron gun are determined using a tunable (235-410nm) ultraviolet laser radiation source for photoemission from both the back nitrogen-doped substrate face and the front homo-epitaxially grown and undoped diamond crystal face. The measured spectral trends of the mean transverse energy (MTE) and quantum efficiency (QE) of the emitted electrons are both anomalous and non-monotonic, but are shown to be consistent with (i) the known physics of electron photoexcitation from the nitrogen substitution states into the conduction bands of diamond, (ii) the energy position and dispersion characteristics of the conduction bands of diamond in the (001) emission direction, (iii) the effective electron affinity of the crystal faces, (iv) the strong electron-(optical)phonon coupling in diamond, and (v) the associated hot electron transport dynamics under energy equipartition with the optical phonons. Notably, the observed hot electron emission is shown to be restricted parallel to the photocathode surface by the low transverse effective masses of the emitting band states - a transverse momentum filtering effect.Comment: 14 pages, 4 figure
    • …
    corecore