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Summary. — The Gram-Charlier expansion was derived in an attempt to express
non-normal densities as infinite series involving the normal density and its deriva-
tives, using the moments data as input terms. In classic Gram-Charlier expansion
the random variable is standardized, so that the Gaussian parameters are always
fixed and referred to the mean equal to zero and to the standard deviation equal to
one. This assumption seems to be too strong. An improvement of Gram-Charlier
expansion was obtained by an optimization process, directed to choose new values
of Gaussian parameters. In order to check the performance of the new approach, an
estimate of the gamma probability density function was calculated. Two probability
density functions, characterized by a different degree of skewness and kurtosis, were
considered. The study has shown that in comparison with the classic assumption,
the new one always gives the best results in terms of probability density function
reproducibility and allows the best evaluation of the input moments. Further the
comparison between estimated moments of order higher than the input ones and
the theoretical moments shows a good reproduction. Finally the method seems
to suggest that a less restrictive condition can be considered respect to the usual
convergence criterium of the Gram-Charlier expansion.

PACS 02.30.Mv – Approximations and expansions.
PACS 02.50.Cw – Probability theory.
PACS 02.50.Ng – Distribution theory and Monte Carlo studies.

1. – Introduction

In many applications it is often important to find a theoretical probability density
function (p.d.f.) that fits non-Gaussian distributions through input data moments. Dif-
ferent methods can be considered: moment-generating function based on the Fourier
transformation of p.d.f., whose coefficients are associated to the moments [1]; character-
istic function theory, that involves the asymptotic expansion derived from the normal
distribution (Edgeworth’s development [2]); Gram-Charlier method that regards an ex-
pansion in terms of Hermite’s polynomials [3]; multi-Gaussian development that deter-
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mines the p.d.f. as a linear combination of p Gaussian densities (very often p = 2), whose
parameters are found through the solution algebric equations [4].

Sometimes, the above methods can produce multimodal p.d.f. and/or negative fre-
quencies. In practice, while multimodal probability density function can take place, neg-
ative frequencies have to be avoided, because they have not statistical meaning. With re-
gard to this, in a very interesting work, Barton and Dennis [5] considered the (β1, β2)
space (where β1 is the skewness and β2 is the kurtosis) and determined the regions of
positivity and unimodality both for the Gram-Charlier and the Edgeworth expansions.
Their work shows that these expansions fit distributions which are at most mildly non-
normal (in terms of skewness and kurtosis).

In the paper Jondeau and Rockinger [6] specialized the method advocated by Barton
to characterize the boundary delimiting the domain in the skewness-kurtosis space over
which the expansion is positive. The authors present a mapping which transforms the
constrained estimation problem into an unconstrained one.

A new theoretical approach of the Gram-Charlier expansion was proposed in 1997 [7]
in order to improve the original formulation [3, 8, 9].

The new formulation was applied in studies of statistical fluids properties [10] to
reproduce the vertical velocity p.d.f. using experimental moments up to 3rd order as
input data. In fact, generally, only the first three moments are used because the sampling
variances of moments higher than the third are large. The new model worked very well
to minimizing negative frequencies and reproducing input moments.

Other authors [11] applied the new formulation of Gram-Charlier in order to develop a
method for blind source separation of multi-microphone signals. These authors proposed
a multi-microphone model based on a nonlinear mapping system and natural phenomena.
In the paper, the proposed nonlinear algorithm is a generalization of serial gradient
algorithm, cross-correlations, and Gram-Charlier series, which was extended to deal with
nonlinear mapping and to be able to adapt to the actual statistical distributions of the
sources by the output signals.

In this work, in order to check and control the performances of the new formulation
of Gram-Charlier, we confine the attention to theoretical moments deriving from a well-
known distribution without data noise.

Therefore, it is possible to test the model performances in reproducing the input mo-
ments and in estimating moments of higher order than the input ones. Having a theo-
retical p.d.f., it is possible to compare estimated frequencies with the theoretical ones.

Different theoretical p.d.f. could be chosen. The Barton and Dennis study [5] showed
that the gamma distribution cannot be approximated by the classic Gram-Charlier ex-
pansion and that it has the worst fitting if compared with the other kind of distributions
they examined (Lognormal and Pearson type V). For this reason two gamma distribu-
tions are in this study used to test the method, in order to verify improvements deriving
from the new formulation.

2. – Mathematical background

All proofs of the calculations are reported in the work [7].
Gram-Charlier’s type-A expansion (GCe) is one of the methods to approximate a

given distribution [8]. In this expansion input data are the moments up to order (k) and
the expansion gives the p.d.f. for the continuous random variable x.
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In the univariate case of GCe, the p.d.f. F (x) is evaluated using a truncated expansion
in terms of Hermite’s polynomials (Hn(x;m;σ)):

Fm,σ(x) = αm,σ(x)
k∑

n=1

Cn

(
μk;m;σ

)
· Hn(x;m;σ)(2.1)

=
k∑

n=1

(−1)nCn

(
μk;m;σ

)
· Dn

xαm,σ(x),

where Dx
n = dn/dxn, Cn(μk;m,σ) are the coefficients and αm,σ(x) is the Gaussian

distribution having m as mean and σ as standard deviation:

αm,σ(x) =
exp

[
− (x − m)2/2σ2

]
σ
√

2π
.

μk is the k-order input moment defined as

μk
x =

+∞∫
−∞

xkF (x)dx.

The right side of (2.1), where the Gaussian derivatives are present, comes out from
the Hermite polynomials definition.

In the classic case [8], Hermite’s terms and Cn coefficents always refer to the stan-
dardized variable z, so that in (2.1) the random variable z and the parameters m = 0
and σ = 1 are chosen in order to determine Cn and Hn.

Below, are presented Hermite’s polynomials and the Cn coefficients determination as
calculated in the new formulation (see appendix A) and B) in Pelliccioni [7]).

– Hermite’s polynomials determination. Hermite’s polynomials can be calculated with
two equivalent methods: iteration rule and Rogrigues formula. The following formula
was obtained for Hermite polynomial:

(2.2) H2n+δd
=

1
σ2(2n+δd)

n∑
z=0

(−1)z(x − m)2n+δd−2z (2n + δd)!σ2n

(2n + δd − 2z)!2zz!
,

where n = 0, 1, 2, . . . . and δd is

δd =

{
1 if (2n + δd) is odd,

0 if (2n + δd) is even.

– Cn coefficients determination. The Cn coefficients can be determined through or-
thogonal rules applied to (2.1), taking into account (2.2):

(2.3) C(2n + δd) =
n∑

α=0

σ2α

2αα!

(2n+δd−2α)∑
β=0

(−1)2n+δd−a−b

(2n + δd − 2α − β)!β!
m2n+δd−2α−βμβ .
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Note that Cn depends on the mean, m, and the standard deviation, σ, so that this
formula is more general than the classic one [8], that is calculated with m = 0, σ = 1.

– Moment transformation rules. As Gram-Charlier expansion refers to variable z, it
is better to use moments related to f(z) as input values (standardized moments).

The density of a random variable z, F (z), is obtained from the density of x, F (x),
using the fact that

F (x)dx = F (z)dz;

it follows that the p.d.f. transformation from F (x) to F (z) is

(2.4) F (z) = F (x)
/ ∣∣∣∣dz

dx

∣∣∣∣ .

Using the definition of the k-order moment of F (z), μz
k, and taking into account (2.4),

the following formula is obtained:

(2.5) μk
z =

1
σk

k∑
ν=0

(−m)k−ν

(
k

k − ν

)
μν

x;

vice versa it is possible to obtain the μx
k from the μz

k by

μk
x =

k∑
ν′=0

σν′
mk−ν′

(
k

k − ν′

)
μν′

z .

– Convergence of Gram-Charlier expansion. The mathematical problem of the con-
vergence of Gram-Charlier expansion was fronted by Cramér [8]. He showed that if f(z)
has bounded variation in (−∞,+∞) and the following integral is convergent,

(2.6)

∞∫
−∞

exp
[
z2

4

]
F (z)dz,

then the Gram-Charlier expansion converges to F (z) at every continuity point.
In order to check the convergence, we express the above integral in terms of the input

moments. With Taylor’s expansion of the exponential term around z = 0, the conver-
gence criterion is transformed by using the series of the standardized moments (2.5) as
input.

(2.7)

∞∫
−∞

exp
[
z2

4

]
F (z)dz =

∞∑
n=0

1
n!

(
1
4

)n

μ2n
z =

∞∑
n=0

vn
z ,

where

(2.8) vn
z =

1
n!

(
1
4

)n

μ2n
z

is the n-th term.
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As evident, the series has all positive terms (μz
2n ≥ 0), thus convergence can be

studied by using Cauchy’s and D’Alambert’s criterium.
It can be noted that the integral (2.6) is referred to the standardized z variable.

Sometimes, referring to x random variable can be useful and the convergence criterium
is obtained substituting (2.4) in (2.6):

(2.9)

∞∫
−∞

exp

[
1
4

(
x − m

σ

)2
]

F (x)dx.

With Taylor’s expansion of the exponential term around x = m, the convergence
criterium is obtained by using the series of the input non-standardized moments:

∞∫
−∞

exp

[
1
4

(
x − m

σ

)2
]

F (x)dx =(2.10)

∞∑
n=0

1
n!

(
1
4

)n 2n∑
ν=0

(−m)2n−ν

(
2n

2n − ν

)
μν

x =
∞∑

n=0

vn
x .

The n-th term of the series is

(2.11) vn
x =

1
n!

(
1
4

)n 2n∑
ν=0

(−m)2n−ν

(
2n

2n − ν

)
μν

x.

Note that the νx
n term could be no positive.

3. – Brief description of GC improvement

The basic assumption in order to improve the GCe [7] consisted into considering the
dispersion (σ) and the mean (m) in (2.1), not necessarily equal to the ones referring to
the reproducing distribution. In other words, the classic expansion forces the parameters
of the Gaussian one to be the same as the experimental ones. Such an assumption could
be too strong, especially when experimental data come from no-Gaussian distribution. In
fact, if the initial distribution is different from the Gaussian one, the best σ and m values
in GCe cannot coincide with the experimental ones. According to this observation, new
values of the standard deviation and the mean are to be searched. The criterium used
to find them is the minimization of three guide functions [7], defined as

– Moments error function
The first function uses an estimate of moments derived by the Gram-Charlier distri-

bution (2.1):

(3.1) μk
0(σ) =

+∞∫
−∞

F (x;σ)xkdx.
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From this expression it is possible to determine a m and σ function defined as

(3.2) S(σ) =
1
n

n∑
k=1

∣∣μk
inp − μk

0

∣∣
μk

inp

100

which gives the error between the estimated μ0
k(m,σ) and input moments μinp

k. It also
expresses the average of absolute relative error in percentage.

New m and σ values come from the minimization of the above function.
The minimization of the S(m,σ) function is related to the distribution reproducibility,

because it regards the optimization of two moments data sets: the first set is the input
one and the second is calculated from the Gram-Charlier expansion.

– Minimization of negative frequencies
The F (x) distribution may be positive or negative. The negative case happens in

consequence of some of the x values, for which the following product is negative:

(3.3) Cn

(
μk;m;σ

)
· Hn(x;m;σ) < 0.

Generally these x values are not considered in the Gram-Charlier distribution and
the relative negative probabilities are settled to zero.

To weigh the total negative contributions coming from the expansion (2.1), the fol-
lowing function of m and σ is defined:

(3.4) A(σ) =
|A(−)|

A(+) + |A(−)|100,

where A(−) is the sum of negative frequencies deriving from GCe, and the denominator
A(+) + |A(−)| is the p.d.f. total area. The function A(m,σ) gives the relative negative
probability of GCe in percentage and is linked to an estimate of the negative values
existing in the p.d.f.

– Moments error and negative frequencies minimization
The third m and σ function is defined as the product of the above functions:

(3.5) P (σ) = S(σ) · A(σ).

P (m,σ) is related both to the input moments reproducibility and to the negative val-
ues minimization in the p.d.f. When the A(m,σ) function is zero, we think it reasonable
to consider the second minimum for P (m,σ).

The study of the above functions is an instrument to find a pair of m and σ. Other
criteria could be considered (for example, the minimization of the distance between the
theoretical and reproduced p.d.f., the minimization of the maximum distances between
cumulative distributions, and so on), but we believe that the above criteria are the most
important in the context of probability theory, because they reproduce the input moments
in the best way and, at the same time, reduce the weight of negative frequencies.

The search for minimum values is not realizable by analytical solutions because solv-
able algebric equations are not given. Finally four values are found: three are from the
minimization process and one is from the classic case (m = 0, σ = 1).
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4. – Application

To evaluate the performance of the new formulation, it is to be dealt with no-Gaussian
distribution. Gamma function is chosen in consequence of considerations given in the in-
troduction (see Barton et al. [5]). A random variable, x, following a gamma distribution,
has a probability density given by

(4.1) G(x; p, λ) =
(λ)p

Γ(p)
xp−1 exp[−λx]

⎧⎪⎨
⎪⎩

p > 0,

λ > 0,

0 < x < ∞,

where Γ(p) is the gamma function; p and λ are the shape and the scale parameters,
respectively.

The k-order moment for the G(x; p, λ) is given by the iteration rule

(4.2) Γμk
x = Γμk−1

x

(p + k − 1)
λ

for k = 1, 2, 3, . . . , with Γμ0
x = 1.

From (4.2) it follows that the mean of the distribution is p/λ and the variance is p/λ2.
The k-order standardized moment for the G(x, p, λ) is obtained by the transformation

rule (2.5).
According to the value of p and λ the distribution is more or less non-normal (in

terms of skewness and kurtosis). In order to analyze the efficiency of the proposed
methodology to fitting non-normal theoretical p.d.f., two different values of gamma pa-
rameters (p and λ) are taken into consideration. In both cases measures of skewness,√

β1 = m3/m
3/2
2 , and kurtosis, β2 = m4/m2

2 (where mk is the k-th central moment)
are computed (table I). Considering that the normal values of

√
β1 and β2 are 0 and 3,

respectively, we can say that case I is related to a mildly non-normal distribution and
case II to a much more non-normal one.

In order to verify the model performance in the above cases we have to lead the two
distributions to the same mean (m = 0) and variance (σ = 1). In this way moments
up to the 10th order have been calculated according to (2.5) and (4.2). For each case
table II shows both standardized and non-standardized moments. The first ones are the
data set given as input in the expansion.

Convergence of the series of standardized moments has to be studied before calculating
GCe. Table III shows the first 10 terms of the series and the convergence coefficents (2.8),
obtained by applying the Cauchy and d’Alambert criteria.

The convergence is linked to the integral (2.6) and, although the two series do not
seem to converge, the GCe is calculated as well.

Table I. – Gamma parameters, skewness and kurtosis.

p λ Skewness Kurtosis

(
√

β1) (β2)

Case I 14.1 9.2 0.533 3.426

Case II 7.2 1 0.745 3.833
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Table II. – Standardized and non-standardized moments of G(x; p, λ).

k
Case I Case II

Γμk
z Γμk

x Γμk
z Γμk

x

0 1 1 1 1

1 0 7.20E+00 0 1.53E+00

2 1 5.90E+01 1 2.52E+00

3 7.45E-01 5.43E+02 5.33E-01 4.40E+00

4 3.83E+00 5.54E+03 3.43E+00 8.18E+00

5 8.70E+00 6.21E+04 5.78E+00 1.61E+01

6 3.54E+01 7.57E+05 2.48E+01 3.34E+01

7 1.31E+02 9.99E+06 7.43E+01 7.30E+01

8 5.90E+02 1.42E+08 3.12E+02 1.67E+02

9 2.81E+03 2.16E+09 1.26E+03 4.02E+02

10 1.47E+04 3.49E+10 5.83E+03 1.01E+03

The first step is to find three mean and standard deviation values that minimize the
guide functions S(m,σ), A(m,σ), P (m,σ). As both distributions to be reproduced are
standardized, the new m and σ values are searched around 0 and 1, respectively. In
particular, see table IV for the ranges considered.

Table III. – Study of convergence for case I and case II.

Case I Case II

n uz
n Cauchy D’Alambert uz

n Cauchy D’Alambert

( n
√

un
z ) (un+1

z /un
z ) ( n

√
un

z ) (un+1
z /un

z )

1 0.250 0.250 - 0.250 0.250 -

2 0.107 0.327 0.428 0.120 0.346 0.479

3 0.065 0.401 0.604 0.092 0.452 0.769

4 0.051 0.475 0.786 0.096 0.557 1.043

5 0.047 0.544 0.934 0.120 0.654 1.248

6 0.050 0.606 1.047 0.170 0.745 1.421

7 0.057 0.664 1.144 0.269 0.829 1.581

8 0.070 0.717 1.234 0.468 0.909 1.737

9 0.093 0.768 1.320 0.884 0.986 1.889

10 0.130 0.816 1.404 1.803 1.061 2.040
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Table IV. – Typical m and σ ranges used for the simulation.

m σ

min max step min max step

Case I −0.5 1.0 0.1 0.1 1.2 0.5

Case II −0.5 1.0 0.1 0.5 2.5 0.5

In this way the local minimum for every guide function and for the two cases is found
with 440 (40× 11) Gram-Charlier calculations. As an example fig. 1 shows the trends of
the three guide functions vs. σ values, when m = 0.3 in case II.

The results of minimization process of the three guide functions S(m,σ), A(m,σ),
P (m,σ) are shown in table IV.

Referring to A(m,σ) function, when the theoretical p.d.f. is as like as the Gaussian
one (case I), negative frequencies are not present and the best choice coincides with the
classic choice (m = 0, σ = 1).

As soon as the theoretical p.d.f. is different from the normal one (case II), the A(m,σ)
function never goes to zero, but the minimum contribution to negative probabilities comes
at m = 0.5 and σ = 1.05. Furthermore in both cases S(m,σ) and P (m,σ) functions have
a minimum for m �= 0 and σ �= 1.

This means that the choice corresponding to classic GCe is the worst one, since even if
the G(x; p, λ) functions are not so much different from the Gaussian shape, the optimiza-
tion shows that the best m and σ values are not equal to the theoretical distributions one.

– The GC model performance: moments reproducibility
In order to estimate the model performance, the following relative error function was

defined for moments of each order:

(4.3) RE(k) =

∣∣∣∣∣μ
k
th − μk

rep

μk
th

∣∣∣∣∣ 100,

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

σ Values

S
, 

A
, 
P

 [
%

]

S

A

P

Fig. 1. – Trend of the three guide functions against σ values (m = 0.3—case II).
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Fig. 2. – Reproducibility of moments: case I.

where μth
k is the k-order gamma moment and μrep

k is the reproduced one. As we deal
with a theoretical p.d.f., the moments of every order are available. According to that it
is possible to evaluate the goodness of the different m and σ choices to reproduce both
the input moments and higher ones. In particular gamma moments up to the 20th order
are computed and the only first 10 moments are used as input data. Moments from 11th
order up to 20th order are considered to check the model performance in reproducing
moments of order higher than the input ones. In practise all available moments are
used as input data, so that the study of moments reproducibility separately for input
moments and moments of higher order than the input ones, has no meaning. Our aim
is to check the performance of the new GC formulation in estimating moments of higher
order than the available ones, in order to apply the method in all cases in which the
use of the available moments (for example the ones greater than the 3rd order) is not
suitable because the sampling variance is large.

In figs. 2 and 3 the RE(k) up to the 10th order (input moments) and from 11th order
up to 20th order are given. The estimate is evaluated for the m and σ values resulting
from the minimization of the guide functions (RES , REP , REA) and for the Gaussian
choice (REG).
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10 12 14 16 18 20
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Fig. 3. – Reproducibility of moments: case II.
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Table V. – Guide functions values (A, S, P ) for minimizating mean and standard deviation.

Case I

m σ A(m, σ) S(m, σ) P (m, σ)

(%) (%)

0 1 0 0.255 0

0.2 1.05 0.311(∗)

0.3 1.05 0.225

Case II

m σ A(m, σ) S(m, σ) P (m, σ)

(%) (%)

0 1 2.620 14.230 37.283

0.3 1.1 0.199

0.4 1.1 0.016

0.5 1.05 0.013

(∗) Second minimum for P (m, σ).

From the comparison between the reproduced and the theoretical moments, a bad
fitting results when the order of moment is higher than the input one. As long as the
order of the moment is equal to the input one, the reproducibility is very good (about
1% both for case I and II). When the orders increase, the reproducibility of the moments
is worst (about 31.9% for case I and 40.7% for case II). However both input and higher-
order moments are much more overestimated in the classic case, and the error is as much
greater as the p.d.f. is different from the Gaussian one (table V).

– The GC model performance: p.d.f. reproducibility
In order to evaluate the accuracy of approximation to gamma distributions for each m

and σ choice, the follow index based on a function of the difference between the gamma
distribution function G(x; p, λ) and the reproduced, Ĝ(x; p, λ) is computed:

(4.4) M = maxx

∣∣Ĝ(x; p, λ) − G(x; p, λ)
∣∣.

For case I the interpolation coming from the classic choice, that coincides with the
one coming from the minimization of A(m,σ) function, is slightly worse than the fitting
deriving from the minimization of S(m,σ) and P (m,σ) functions. While for case II the
interpolation coming from the classic choice is quite worst than the fitting resulting from
the minimization of A(m,σ), S(m,σ) and P (m,σ) functions (tables VI and VII).

Figures 4 and 5 show the gamma functions and the interpolations both in case I and II
(capital letters A, P, S stand for interpolation coming from the minimization of A(m,σ),
S(m,σ) and P (m,σ) functions, while G stands for interpolation coming from the classic
choice).
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Table VI. – Reproducibility of the moments.

Case I Case II

RE(k) up to the 10th order

mean st. dev. mean st. dev.

RES 0.2 0.2 0.2 0.2

REA 2.5 1.5 2.6 1.6

REP 0.3 0.2 0.3 0.3

REG - - 14.2 6.7

RE(k) from 11th order up to 20th order

mean st. dev. mean st. dev.

RES 26.5 20.9 41.7 27.4

REA 40.3 25.5 41.4 28.9

REP 29.0 21.9 39.2 27.0

REG - - 55.7 31.2

Table VII. – M values for each m and σ choices.

Case I Case II

MG - 0.0643

MA 0.0091 0.0117

MS 0.0023 0.0070

MP 0.0024 0.0065
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Fig. 4. – Theoretical and reproduced gamma p.d.f.: case I.
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Fig. 5. – Theoretical and reproduced gamma p.d.f.: case II.

It is of interest to note that the convergence criterium given in the 2nd section seems
to be too restrictive, when optimizing m and σ values are considered, in fact although
the convergence criterium is not verified, the Gram-Charlier expansion converges to f(z)
in both cases.

5. – Conclusion

The Gram-Charlier expansion calculates the probability density function starting from
the moments of any order. It concerns an infinite series involving the normal density and
its derivatives. In practice, a finite number of terms of the series is taken to fit the p.d.f.

Classic approach considers the parameters of the Gaussian p.d.f. as fixed and in
according to it no modulation is allowed.

Sometimes this assumption can be too strong and can bias the performance of the
models in a bad way. Consequently the truncated series may be negative over certain
intervals or may exhibit multimodality. In the past some authors [5] considered the
(β1, β2) space (where β1 is the skewness and β2 is the kurtosis) and determined typical
domains of positivity and unimodality.

The new formulation of the Gram-Charlier expansion allows to adapt the shape of
the Gaussian distribution to the experimental one. In fact, when parameters are fixed,
we force the Gaussian distribution to have the same mean and standard deviation of the
experimental one. This assumption demonstrated to be too restrictive to fit distributions,
expecially when they have no Gaussian shape. From this observation it derives the idea
to choice mean and standard deviation values that are different from the classic choice.
The new parameters are chosen to best reproduce the input moments and to minimize
negative frequencies.

The Gram-Charlier performance clearly improves with the modulation of the Gaussian
distribution.

The proposed approach has been tested by estimating a theoretical p.d.f., the gamma
one.

To check better the reproducibility of the input distribution and the relative moments,
two gamma p.d.f.’s, characterized by a different degree of skewness and kurtosis, were
taken into consideration.
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Having theoretical p.d.f. and, consequentely, theoretical moments, different checks
can be performed. First, it is possible to verify exactly the capability to reproduce the
distribution and the relative input moments of any order.

The results show that when the input distribution is as like as the Gaussian one, classic
expansion gives good performance too. On the contrary, when skewed distributions are
considered, results coming from the classic approach are generally worse than the ones
coming from the new approach. The improvements rising from the new formulation
seems to suggest that in this case, a less restrictive criterium than the one considered
in the classic approach, could be considered to front the mathematical problem of the
convergence of the Gram-Charlier expansion.

A second application rising from the knowledge of theoretical moments concerns the
possibility to verify the accuracy of the estimated moments of higher order than that of
input ones. Usually this aspect cannot be tested, because everybody uses all available
experimental moments as input. In this case too, classic expansion always gives a worse
performance than the new one.
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