6 research outputs found

    Second-Order Photochemical Upconversion in Organic Systems

    No full text
    In order to extend the photon energy shift of sensitized upconversion processes based on triplet–triplet annihilation in multicomponent organic systems, we have demonstrated that it is possible to exploit a sequence of consecutive upconversion steps. We have therefore realized an all-optical device for double upconversion: a light blue-shift of more than 0.9 eV was obtained at an excitation irradiance of a few tens of milliwatts per square centimeter

    Solid-State Sensitized Upconversion in Polyacrylate Elastomers

    No full text
    The sensitized triplet–triplet annihilation-based upconversion in bicomponent systems is currently considered the most promising strategy for increasing the light-harvesting ability of solar cells. Flexible, manageable, inexpensive up-converting devices become possible by implementing this process in elastomers. Here, we report a study combining optical spectroscopy data of the light conversion process with the nano- and macroscopic viscoelastic characterization of the host material embedding the active dyes, in order to find a rationale for the fabrication of efficient solid-state upconverting systems. By using the poly­(<i>n</i>-alkyl acrylates) as a model of the monophasic elastomers, we demonstrate that the yield of the bimolecular interactions at the base of the upconversion process, namely, energy transfer and triplet–triplet annihilation, is mainly determined by the glass transition temperature (<i>T</i><sub>g</sub>) of the polymer. By employing the polyoctyl acrylate (<i>T</i><sub>g</sub> = 211 K), we achieved a conversion yield at the solid state larger than 10% at an irradiance of 1 sun, showing the potential of the elastomer-based upconverting materials for developing real-world devices

    Unraveling Triplet Excitons Photophysics in Hyper-Cross-Linked Polymeric Nanoparticles: Toward the Next Generation of Solid-State Upconverting Materials

    No full text
    The technological application of sensitized upconversion based on triplet–triplet annihilation (TTA) requires the transition from systems operating in liquid solutions to solid-state materials. Here, we demonstrate that the high upconversion efficiency reported in hyper-cross-linked nanoparticles does not originate from residual mobility of the embedded dyes as it happens in soft hosts. The hyper-reticulation from one side blocks the dyes in fixed positions, but on the other one, it suppresses the nonradiative spontaneous decay of the triplet excitons, reducing intramolecular relaxations. TTA is thus enabled by an unprecedented extension of the triplet lifetime, which grants long excitons diffusion lengths by hopping among the dye framework and gives rise to high upconversion yield without any molecular displacement. This finding paves the way for the design of a new class of upconverting materials, which in principle can operate at excitation intensities even lower than those requested in liquid or in rubber hosts

    Scintillation Properties of CsPbBr<sub>3</sub> Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors

    No full text
    Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization

    Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting

    No full text
    Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet–triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production
    corecore