31 research outputs found

    Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of {SORGENTINA}-{RF}

    Get PDF
    The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5-7 x 10(13) s(-1). The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Carl Maria von Weber / auf Stein gez. v. Gentili

    No full text
    Appartient à l’ensemble documentaire : IconMUS1Appartient à l’ensemble documentaire : IconMUSNumAppartient à l’ensemble documentaire : IconMUS

    Adaptive filtering and random variables coefficient for analyzing functional magnetic resonance imaging data.

    No full text
    Functional magnetic resonance imaging (fMRI) is used to study brain functional connectivity (FC) after filtering the physiological noise (PN). Herein, we employ: adaptive filtering for removing nonstationary PN; random variables (RV) coefficient for FC analysis. Comparisons with standard techniques were performed by quantifying PN filtering and FC in neural vs. non-neural regions. As a result, adaptive filtering plus RV coefficient showed a greater suppression of PN and higher connectivity in neural regions, representing a novel effective approach to analyze fMRI data

    Singular spectrum analysis and adaptive filtering enhance the functional connectivity analysis of resting state fMRI data

    No full text
    Sources of noise in resting-state fMRI experiments include instrumental and physiological noises, which need to be filtered before a functional connectivity analysis of brain regions is performed. These noisy components show autocorrelated and nonstationary properties that limit the efficacy of standard techniques (i.e. time filtering and general linear model). Herein we describe a novel approach based on the combination of singular spectrum analysis and adaptive filtering, which allows a greater noise reduction and yields better connectivity estimates between regions at rest, providing a new feasible procedure to analyze fMRI data. \ua9 2014 World Scientific Publishing Company

    Mind injuries after cardiac surgery.

    No full text
    After cardiac surgery, delirium, cognitive dysfunction, depression, or anxiety disorders frequently occur, and profoundly affect patients' prognosis and quality of life. This narrative review focuses on the main clinical presentations of cognitive and psychological problems ('mind injuries') that occur postoperatively in absence of ascertainable focal neurologic deficits, exploring their pathophysiological mechanisms and possible strategies for prevention and treatment. Postoperative cognitive dysfunction is a potentially devastating complication that can involve several mechanisms and several predisposing, intraoperative, and postoperative risk factors, which can result in or be associated to cerebral microvascular damage. Postoperative depression is influenced by genetic or psychosocial predisposing factors, by neuroendocrine activation, and by the release of several pro-inflammatory factors. The net effect of these changes is neuroinflammation. These complex biochemical alterations, along with an aspecific response to stressful life events, might target the function of several brain areas, which are thought to represent a trigger factor for the onset of depression
    corecore