3,709 research outputs found

    Hydrated multivalent cations are new class of molten salt mixtures

    Get PDF
    Electrical conductance and activation energy measurements on mixtures of calcium and potassium nitrate show the hydrated form to be a new class of molten salt. The theoretical glass transition temperature of the hydrate varied in a manner opposite to that of the anhydrous system

    Correlations between vibrational entropy and dynamics in super-cooled liquids

    Full text link
    A relation between vibrational entropy and particles mean square displacement is derived in super-cooled liquids, assuming that the main effect of temperature changes is to rescale the vibrational spectrum. Deviations from this relation, in particular due to the presence of a Boson Peak whose shape and frequency changes with temperature, are estimated. Using observations of the short-time dynamics in liquids of various fragility, it is argued that (i) if the crystal entropy is significantly smaller than the liquid entropy at TgT_g, the extrapolation of the vibrational entropy leads to the correlation TK≈T0T_K\approx T_0, where TKT_K is the Kauzmann temperature and T0T_0 is the temperature extracted from the Vogel-Fulcher fit of the viscosity. (ii) The jump in specific heat associated with vibrational entropy is very small for strong liquids, and increases with fragility. The analysis suggests that these correlations stem from the stiffening of the Boson Peak under cooling, underlying the importance of this phenomenon on the dynamical arrest.Comment: Eqs.2 and 7 corrected, results unchange

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    New class of compounds have very low vapor pressures

    Get PDF
    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids

    Aging vs crystallisation dynamics in hyperquenched glasses and a resolution of the water Tg controversy

    Full text link
    The possibility of observing a glass transition in water before crystallisation occurs has been debated vigorously but inconclusively over five decades [1,2]. For two decades a glass transition at 136K [2,3] was accepted but this transition has perplexing qualities [4]. Recently it has been argued[2,5],that this assignment must be wrong. The re-assignment of Tg to temperatures above the 150K crystallisation was vigorously contested [6]. Here we use detailed anneal-and-scan studies of a hyperquenched inorganic glass, which does not crystallize on heating, to interpret the perplexing aspects of the 136K water phenomenon. We show that it is indeed linked to a glass transition, though only via a cross-over phenomenon. The thermal history that gives the same behaviour ("shadow" glass transition) in the inorganic glass is linked by crossover to a "normal" glass transition 23% higher in temperature. Thus a Tg is indeed unobservable for water, while the vitreous nature of hyperquenched glassy water is strongly supported. The shadow Tg is reproducible in the inorganic glass as it is in H2O. The observed aging dynamics are very relevant to current glass theory, particularly to dynamical heterogeneity which is seen to have an energy manifestation.Comment: 23 pages, 4 figure

    Excitation Chains at the Glass Transition

    Full text link
    The excitation-chain theory of the glass transition, proposed in an earlier publication, predicts diverging, super-Arrhenius relaxation times and, {\it via} a similarly diverging length scale, suggests a way of understanding the relations between dynamic and thermodynamic properties of glass-forming liquids. I argue here that critically large excitation chains play a role roughly analogous to that played by critical clusters in the droplet model of vapor condensation. The chains necessarily induce spatial heterogeneities in the equilibrium states of glassy systems; and these heterogeneities may be related to stretched-exponential relaxation. Unlike a first-order condensation point in a vapor, the glass transition is not a conventional phase transformation, and may not be a thermodynamic transition at all.Comment: 4 pages, no figure

    The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains

    Full text link
    We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that of models based on free-volume congested dynamics are questioned. Finally, we discuss how the main aspects of the phenomenology of supercooled liquids, including the crossover from Arrhenius to superArrhenius activated behavior and the heterogeneous character of the α\alpha relaxation, can be described by an approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Some Finite Size Effects in Simulations of Glass Dynamics

    Full text link
    We present the results of a molecular dynamics computer simulation in which we investigate the dynamics of silica. By considering different system sizes, we show that in simulations of the dynamics of this strong glass former surprisingly large finite size effects are present. In particular we demonstrate that the relaxation times of the incoherent intermediate scattering function and the time dependence of the mean squared displacement are affected by such finite size effects. By compressing the system to high densities, we transform it to a fragile glass former and find that for that system these types of finite size effects are much weaker.Comment: 12 pages of RevTex, 4 postscript figures available from W. Ko

    Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater

    Get PDF
    We have observed fallout from the recent Fukushima Dai-ichi reactor accident in samples of rainwater collected in the San Francisco Bay area. Gamma ray spectra measured from these samples show clear evidence of fission products - 131,132I, 132Te, and 134,137Cs. The activity levels we have measured for these isotopes are very low and pose no health risk to the public.Comment: 5 pages, 2 figure
    • …
    corecore