5,302 research outputs found

    Transonic small disturbances equation applied to the solution of two-dimensional nonsteady flows

    Get PDF
    Transonic nonsteady flows are of large practical interest. Aeroelastic instability prediction, control figured vehicle techniques or rotary wings in forward flight are some examples justifying the effort undertaken to improve knowledge of these problems is described. The numerical solution of these problems under the potential flow hypothesis is described. The use of an alternating direction implicit scheme allows the efficient resolution of the two dimensional transonic small perturbations equation

    Which diagnostic tests are most useful in a chest pain unit protocol?

    Get PDF
    Background The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol were most diagnostically and prognostically useful. Methods The Northern General Hospital CPU uses 2–6 hours of serial ECG / ST segment monitoring, CK-MB(mass) on arrival and at least two hours later, troponin T at least six hours after worst pain and exercise treadmill testing. Data were prospectively collected over an eighteen-month period from patients managed on the CPU. Patients discharged after CPU assessment were invited to attend a follow-up appointment 72 hours later for ECG and troponin T measurement. Hospital records of all patients were reviewed to identify adverse cardiac events over the subsequent six months. Diagnostic accuracy of each test was estimated by calculating sensitivity and specificity for: 1) acute coronary syndrome (ACS) with clinical myocardial infarction and 2) ACS with myocyte necrosis. Prognostic value was estimated by calculating the relative risk of an adverse cardiac event following a positive result. Results Of the 706 patients, 30 (4.2%) were diagnosed as ACS with myocardial infarction, 30 (4.2%) as ACS with myocyte necrosis, and 32 (4.5%) suffered an adverse cardiac event. Sensitivities for ACS with myocardial infarction and myocyte necrosis respectively were: serial ECG / ST segment monitoring 33% and 23%; CK-MB(mass) 96% and 63%; troponin T (using 0.03 ng/ml threshold) 96% and 90%. The only test that added useful prognostic information was exercise treadmill testing (relative risk 6 for cardiac death, non-fatal myocardial infarction or arrhythmia over six months). Conclusion Serial ECG / ST monitoring, as used in our protocol, adds little diagnostic or prognostic value in patients with a normal or non-diagnostic initial ECG. CK-MB(mass) can rule out ACS with clinical myocardial infarction but not myocyte necrosis(defined as a troponin elevation without myocardial infarction). Using a low threshold for positivity for troponin T improves sensitivity of this test for myocardial infarction and myocardial necrosis. Exercise treadmill testing predicts subsequent adverse cardiac events

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Pole Dancing: 3D Morphs for Tree Drawings

    Full text link
    We study the question whether a crossing-free 3D morph between two straight-line drawings of an nn-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(logn)O(\log n) steps, while for the latter Θ(n)\Theta(n) steps are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    High Frequency dynamics in metallic glasses

    Full text link
    Using Inelastic X-ray Scattering we studied the collective dynamics of the glassy alloy Ni33_{33}Zr67_{67} in the first pseudo Brillouin zone, an energy-momentum region still unexplored in metallic glasses. We determine key properties such as the momentum transfer dependence of the sound velocity and of the acoustic damping, discussing the results in the general context of recently proposed pictures for acoustic dynamics in glasses. Specifically, we demonstrate the existence in this strong glass of well defined (in the Ioffe Regel sense) acoustic-like excitations well above the Boson Peak energy.Comment: 4 pages, 4 .eps figures, accepted in Phys. Rev. Let

    Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC1399

    Get PDF
    We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments. The measurement of rh for the major fraction of the NGC1399 GC system reveals a trend of increasing rh versus galactocentric distance, Rgal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of rh(red)/rh(blue)=0.82+/-0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to rh~2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger Rgal. We match our GC rh measurements with radial velocity data from the literature and find that compact GCs show a significantly smaller line-of-sight velocity dispersion, =225+/-25 km/s, than their extended counterparts, =317+/-21 km/s. Considering the weaker statistical correlation in the GC rh-color and the GC rh-Rgal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters.Comment: 22 pages, 17 figures, accepted for publication in The Astrophysical Journal, a high-quality PDF version is available at http://www.astro.puc.cl/~tpuzia/PUC/Home.htm

    Measuring the Spins of Stellar Black Holes: A Progress Report

    Full text link
    We use the Novikov-Thorne thin disk model to fit the thermal continuum X-ray spectra of black hole X-ray binaries, and thereby extract the dimensionless spin parameter a* = a/M of the black hole as a parameter of the fit. We summarize the results obtained to date for six systems and describe work in progress on additional systems. We also describe recent methodological advances, our current efforts to make our analysis software fully available to others, and our theoretical efforts to validate the Novikov-Thorne model.Comment: 6 pages, conference proceedings, X-ray Astronomy 2009: Present Status, Multi-Wavelength Approach and Future Perspectives, AIP, eds. A. Comastri et al.; list of authors revise

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201
    corecore