8 research outputs found

    Is Atorvastatin Associated with New Onset Diabetes or Deterioration of Glycemic Control? Systematic Review Using Data from 1.9 Million Patients.

    Get PDF
    BACKGROUND: Current evidence indicates that statins increase the risk of new onset diabetes mellitus (NOD) and also deteriorate the glycemic control in patients with known diabetes mellitus (DM) after high-dose statin therapy. AIMS: The aim of this review was to explore the effect of atorvastatin in causing NOD or deteriorating glycemic control in patients with DM. METHODS: Two independent reviewers conducted the literature search, through PubMed database searching for articles published in English until April 2015, and only primary studies were included. RESULTS: Of the 919 articles identified in our original search, 33 met the criteria for this review encompassing 1,951,113 participants. Twenty articles examined dysregulation of DM due to atorvastatin. Half of them showed that there was no significant change in glycemic control in patients treated with atorvastatin. Other studies showed that fasting plasma glucose and HbA1c levels were increased by atorvastatin. Thirteen articles examined if atorvastatin causes NOD. The majority of these articles showed that patients who used atorvastatin had a higher dose-dependent risk of developing NOD. CONCLUSION: This systematic review suggests that there is an association between atorvastatin treatment and NOD. Moreover, it showed that atorvastatin in high dose causes worsening of the glycemic control in patients with DM

    Association of matrix γ-carboxyglutamic acid protein levels with insulin resistance and Lp(a) in diabetes: A cross-sectional study.

    Get PDF
    AIMS: The risk of cardiovascular disease (CVD) and mortality is increased in patients with chronic kidney disease (CKD), with a background role of vascular calcification in the development of CVD also reported. Studies have demonstrated that high lipoprotein(a) (Lp(a)) levels accelerate the development of atherosclerolsis and are potentially involved in the vascular calcification. Matrix Gla Protein (MGP) seems to play an important role in vascular calcification. The aim of the study was to examine the potential association of MGP concentrations with Lp(a) and insulin resistance. METHODS: The study involved 100patients divided in four groups: 25 with both CKD stage 4 and Type2 Diabetes (DM) (Group-A), 25 with CKD4 without DM (Group-B), 25 non uremic patients with DM (Group-C) and 25 healthy subjects (Group-D). Serum glucose, Lp(a), MGP, plasma HBA1c and insulin were measured in all patients. Insulin resistance was estimated by the homeostasis model assessment equation (HOMA-IR). RESULTS: A significant positive linear association between MGP and Lp(a) levels (r=0.272, p=0.006) was noted, as well as between MGP and HOMA-IR levels (r=0.308, p=0.002). However, no significant linear association between Lp(a) and HOMA-IR levels was recorded. A similar positive association between MGP and insulin levels (r=0.204, p=0.042) was also found. CONCLUSION: This study concluded that diabetes coexisting with renal disease leads to extreme vascular calcification expressed by elevated MGP levels, resulting in higher frequency of cardiovascular disease in comparison to CKD patients without diabetes. The detected Lp(a) and MGP association in CKD4 patients may also represent the key to the complicated mechanism of their coexisting accelerated atherosclerosis and vascular calcification

    Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery

    No full text
    Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed

    A Systematic Review on HOX Genes as Potential Biomarkers in Colorectal Cancer: An Emerging Role of HOXB9

    No full text
    Emerging evidence shows that Homeobox (HOX) genes are important in carcinogenesis, and their dysregulation has been linked with metastatic potential and poor prognosis. This review (PROSPERO-CRD42020190953) aims to systematically investigate the role of HOX genes as biomarkers in CRC and the impact of their modulation on tumour growth and progression. The MEDLINE, EMBASE, Web of Science and Cochrane databases were searched for eligible studies exploring two research questions: (a) the clinicopathological and prognostic significance of HOX dysregulation in patients with CRC and (b) the functional role of HOX genes in CRC progression. Twenty-five studies enrolling 3003 CRC patients, showed that aberrant expression of HOX proteins was significantly related to tumour depth, nodal invasion, distant metastases, advanced stage and poor prognosis. A post-hoc meta-analysis on HOXB9 showed that its overexpression was significantly associated with the presence of distant metastases (pooled OR 4.14, 95% CI 1.64–10.43, I2 = 0%, p = 0.003). Twenty-two preclinical studies showed that HOX proteins are crucially related to tumour growth and metastatic potential by affecting cell proliferation and altering the expression of epithelial-mesenchymal transition modulators. In conclusion, HOX proteins may play vital roles in CRC progression and are associated with overall survival. HOXB9 may be a critical transcription factor in CRC

    HOXB9 Overexpression Promotes Colorectal Cancer Progression and Is Associated with Worse Survival in Liver Resection Patients for Colorectal Liver Metastases

    No full text
    As is known, HOXB9 is an important factor affecting disease progression and overall survival (OS) in cancer. However, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the role of HOXB9 in CRC progression and its association with OS in colorectal liver metastases (CRLM). We analysed differential HOXB9 expression in CRC using the Tissue Cancer Genome Atlas database (TCGA). We modulated HOXB9 expression in vitro to assess its impact on cell proliferation and epithelial-mesenchymal transition (EMT). Lastly, we explored the association of HOXB9 protein expression with OS, using an institutional patient cohort (n = 110) who underwent liver resection for CRLM. Furthermore, HOXB9 was upregulated in TCGA-CRC (n = 644) vs. normal tissue (n = 51) and its expression levels were elevated in KRAS mutations (p < 0.0001). In vitro, HOXB9 overexpression increased cell proliferation (p < 0.001) and upregulated the mRNA expression of EMT markers (VIM, CDH2, ZEB1, ZEB2, SNAI1 and SNAI2) while downregulated CDH1, (p < 0.05 for all comparisons). Conversely, HOXB9 silencing disrupted cell growth (p < 0.0001). High HOXB9 expression (HR = 3.82, 95% CI: 1.59–9.2, p = 0.003) was independently associated with worse OS in CRLM-HOXB9-expressing patients after liver resection. In conclusion, HOXB9 may be associated with worse OS in CRLM and may promote CRC progression, whereas HOXB9 silencing may inhibit CRC growth

    Association of matrix gamma-carboxyglutamic acid protein levels with insulin resistance and Lp(a) in diabetes: A cross-sectional study

    No full text
    Aims: The risk of cardiovascular disease (CVD) and mortality is increased in patients with chronic kidney disease (CKD), with a background role of vascular calcification in the development of CVD also reported. Studies have demonstrated that high lipoprotein(a) (Lp(a)) levels accelerate the development of atherosclerolsis and are potentially involved in the vascular calcification. Matrix Gla Protein (MGP) seems to play an important role in vascular calcification. The aim of the study was to examine the potential association of MGP concentrations with Lp(a) and insulin resistance. Methods: The study involved 100patients divided in four groups: 25 with both CKD stage 4 and Type2 Diabetes (DM) (Group-A), 25 with CKD4 without DM (Group-B), 25 non uremic patients with DM (Group-C) and 25 healthy subjects (Group-D). Serum glucose, Lp(a), MGP, plasma HBA1c and insulin were measured in all patients. Insulin resistance was estimated by the homeostasis model assessment equation (HOMA-IR). Results: A significant positive linear association between MGP and Lp(a) levels (r = 0.272, p = 0.006) was noted, as well as between MGP and HOMA-IR levels (r = 0.308, p = 0.002). However, no significant linear association between Lp(a) and HOMA-IR levels was recorded. A similar positive association between MGP and insulin levels (r = 0.204, p = 0.042) was also found. Conclusion: This study concluded that diabetes coexisting with renal disease leads to extreme vascular calcification expressed by elevated MGP levels, resulting in higher frequency of cardiovascular disease in comparison to CKD patients without diabetes. The detected Lp(a) and MGP association in CKD4 patients may also represent the key to the complicated mechanism of their coexisting accelerated atherosclerosis and vascular calcification. (C) 2017 Elsevier B.V. All rights reserved

    Early metabolomic, lipid and lipoprotein changes in response to medical and surgical therapeutic approaches to obesity

    No full text
    Background: Glucagon-like peptide-1 receptor agonists (GLP-1RA) and bariatric surgery have proven to be effective treatments for obesity and cardiometabolic conditions. We aimed to explore the early metabolomic changes in response to GLP-1RA (liraglutide) therapy vs. placebo and in comparison to bariatric surgery.Methods: Three clinical studies were conducted: a bariatric surgery cohort study of participants with morbid obesity who underwent either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) studied over four and twelve weeks, and two randomized placebo-controlled, crossover double blind studies of liraglutide vs. placebo administration in participants with type 2 diabetes (T2D) and participants with obesity studied for three and five weeks, respectively. Nuclear magnetic resonance spectroscopy-derived metabolomic data were assessed in all eligible participants who completed all the scheduled in-clinic visits. The primary outcome of the study was to explore the changes of the metabolome among participants with obesity with and without T2D receiving the GLP-1RA liraglutide vs. placebo and participants with obesity undergoing bariatric surgery during the three to five-week study period. In addition, we assessed the bariatric surgery effects longitudinally over the twelve weeks of the study and the differences between the bariatric surgery subgroups on the metabolome. The trials are registered with ClinicalTrials.gov, numbers NCT03851874, NCT01562678 and NCT02944500.Results: Bariatric surgery had a more pronounced effect on weight and body mass index reduction (-14.19 +/- 5.27 kg and -5.19 +/- 5.27, respectively, p < 0.001 for both) and resulted in more pronounced metabolomic and lipidomic changes compared to liraglutide therapy at four weeks postoperatively. Significant changes were observed in lipoprotein parameters, inflammatory markers, ketone bodies, citrate, and branched-chain amino acids after the first three to five weeks of intervention. After adjusting for the amount of weight loss, a significant difference among the study groups remained only for acetoacetate, beta-hydroxybutyrate, and citrate (p < 0.05 after FDR correction). Glucose levels were significantly reduced in all intervention groups but mainly in the T2D group receiving GLP-1RA treatment. After adjusting for weight loss, only glucose levels remained significant (p = 0.001 after FDR correction), mainly due to the glucose change in the T2D group receiving GLP-1RA. Similar results with those observed at four weeks were observed in the surgical group when delta changes at twelve weeks were assessed. Comparing the two types of bariatric surgery, an intervention effect was more pronounced in the RYGB subgroup regarding total triglycerides, triglyceride-rich lipoprotein size, and trimethylamine-N-oxide (p for intervention: 0.031, 0.028, 0.036, respectively). However, after applying FDR correction, these changes deemed to be only suggestive; only time effects remained significant with no significant changes persisting in relation to the types of bariatric surgery.Conclusions: The results of this study suggest that the early metabolomic, lipid and lipoprotein changes observed between liraglutide treatment and bariatric surgery are similar and result largely from the changes in patients' body weight. Specific changes observed in the short-term post-surgical period between bariatric vs. nonsurgical treated participants, i.e., acetoacetate, beta-hydroxybutyrate, and citrate changes, may reflect changes in patient diets and calorie intake indicating potential calorie and diet-driven metabolomics/lipidomic effects in the short-term postoperatively. Significant differences observed between SG and RYGB need to be confirmed and extended by future studies

    Stubborn sets for model checking the EF/AG fragment of CTL

    Get PDF
    The general stubborn set approach to CTL model checking [2] has the drawback that one either finds a stubborn set with only one enabled transition or one has to expand all enabled transitions. This restriction does not apply in our approach to a fragment of CTL. Furthermore, our reduction does not depend on the invisibility of transitions in a stubborn set. (orig.)SIGLEAvailable from TIB Hannover: RR 2036(123) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore