4 research outputs found
Study of Aedes aegypti population with emphasis on the gonotrophic cycle length and identification of arboviruses: implications for vector management in cemeteries
Aedes aegypti is the vector of the arboviruses causing dengue, chikungunya and zika infections in Mexico. However, its presence in public places has not been fully evaluated. In a cemetery from Merida, Yucatan, Mexico, the productivity of Ae. aegypti, the gonotrophic cycle, and the presence of Ae. aegypti females infected with arboviruses were evaluated. Immature and adult mosquitoes were inspected every two months between April 2016 to June 2017. For the gonotrophic cycle length, the daily pattern of total and parous female ratio was registered and was analyzed using time series analysis. Ae. aegypti females were sorted into pools and assayed for flavivirus RNA by RT-PCR and Sanger sequencing. Aedes aegypti immatures represented 82.86% (8,627/10,411) of the collection. In total, 1,648 Ae. aegypti females were sorted into 166 pools. Two pools were positive; one for dengue virus (DENV-1) and the other for zika virus (ZIKV). The phylogenetic analysis revealed that the DENV-1 is more closely related to isolates from Brazil. While ZIKV is more closely related to the Asian lineage, which were isolates from Guatemala and Mexico. We report some evidence of vertical transmission of DENV-1 in nulliparous females of Ae. aegypti. The gonotrophic cycle was four and three days in the rainy and dry season, respectively. The cemetery of Merida is an important focus of Ae. aegypti proliferation, and these environments may play a role in arboviruses transmission; probably limiting the efficacy of attempts to suppress the presence of mosquitoes in domestic environments
Dataset of assembly and annotation of the mitogenomes of Triatoma dimidiata and Triatoma huehuetenanguensis captured from Yucatán, México
Triatoma dimidiata is a species complex, and its members are responsible for the transmission of Trypanosoma cruzi, the causative agent of Chagas disease. We present the assembly and annotation of the mitogenome of the Triatoma dimidiata (Latreille, 1811) and Triatoma huehuetenanguensis Lima-Cordón & Justi, 2019. The mitochondrial genomes were successfully sequenced using the Illumina Nextseq 500 platform, 2×75 cycles, and 5 million reads per sample. Contigs were assembled and annotated using the reference genomes of T. dimidiata and T. huehuetenanguensis available in Genbank (NC_002609 and NC_050325.1, respectively). The mitogenomes of T. dimidiata have lengths of 17,008 bp, while those of T. huehuetenanguensis are 15,910 bp and 15,909 bp. The genome comprises 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. The mitogenomes will be valuable to scholars and students focused on integrative taxonomy, phylogeography, and evolutionary studies of the Triatoma dimidiata complex and the transmission of Chagas diseases
Entomological and virological surveillance for dengue virus in churches in Merida, Mexico
ABSTRACT This study was designed to assess whether churches in endemic dengue districts in Merida, Mexico provide suitable breeding habitats for mosquitoes and are potential sites for dengue virus (DENV) transmission. Churches were inspected for immature and adult mosquitoes once every week from November 2015 to October 2016. A total of 10,997 immatures of five species were collected. The most abundant species were Aedes aegypti (6,051) and Culex quinquefasciatus (3,018). The most common source of immature Ae. aegypti were buckets followed by disposable containers. Adult collections yielded 21,226 mosquitoes of nine species. The most common species were Cx. quinquefasciatus (15,215) and Ae. aegypti (3,902). Aedes aegypti were found all year long. Female Ae. aegypti (1,380) were sorted into pools (166) and assayed for flavivirus RNA by RT-PCR and Sanger sequencing. Two pools were positive for DENV (DENV-1 and 2). In conclusion, we demonstrated that some churches in Merida are infested with mosquitoes all year long and they potentially serve as sites for DENV transmission and should therefore be considered for inclusion in mosquito and arboviruses control and surveillance efforts