1,964 research outputs found

    Consensus for nonlinear monotone networks with unilateral interactions

    Get PDF
    This paper deals with an extended framework of the distributed asymptotic agreement problem by allowing the presence of unilateral interactions (optimistic or pessimistic) in place of bilateral ones, for a large class of nonlinear monotone time-varying networks. In this original setup we firstly introduce notions of unilateral optimistic and/or pessimistic interaction, of associated bicolored edge in the interaction graph and a suitable graph-theoretical connectedness property. Secondly, we formulate a new assumption of integral connectivity and show that it is sufficient to guarantee exponential convergence towards the agreement subspace. Finally, we remark that the proposed conditions are also necessary for consensuability. Theoretical advances are emphasized through illustrative examples given both to support the discussion and to highlight how the proposed framework extends all existing conditions for consensus of monotone networks

    Real-time visual loop-closure detection

    No full text
    Published versio

    Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

    No full text
    Published versio

    Incremental vision-based topological SLAM

    No full text
    Published versio

    Low temperature steam reforming of methane : A combined isotopic and microkinetic study

    Get PDF
    The authors would like to acknowledge Professors Joris W. Thybaut and Guy B. Marin, Laboratory for Chemical Technology of Ghent University, for providing the Micro-Kinetic Engine (MKE) code based on which the model presented in the current work has been developed.Peer reviewedPostprin

    Ultrasonic irrigation flows in root canals:effects of ultrasound power and file insertion depth

    Get PDF
    Ultrasonic irrigation during root canal treatment can enhance biofilm disruption. The challenge is to improve the fluid flow so that the irrigant reaches areas inaccessible to hand instrumentation. The aim of this study is to experimentally investigate how the flow field and hydrodynamic forces induced by ultrasonic irrigation are influenced by the ultrasound power and file insertion depth. A root canal phantom was 3D printed and used as a mold for the fabrication of a PDMS channel. An ultrasonic instrument with a #15 K-file provided the irrigation. The flow field was studied by means of Particle Image Velocimetry (PIV). The time averaged velocity and shear stress distributions were found to vary significantly with ultrasound power. Their maximum values increase sharply for low powers and up to a critical power level. At and above this setting, the flow pattern changes, from the high velocity and shear stress region confined in the vicinity of the tip, to one covering the whole root canal domain. Exceeding this threshold also induces a moderate increase in the maximum velocities and shear stresses. The insertion depth was found to have a smaller effect on the measured velocity and shear stresses. Due to the oscillating nature of the flow, instantaneous maximum velocities and shear stresses can reach much higher values than the mean, especially for high powers. Ultrasonic irrigation will benefit from using a higher power setting as this does produce greater shear stresses near the walls of the root canal leading to the potential for increased biofilm removal

    A Petri Net approach to consensus in networks with joint-agent interactions

    Get PDF
    In this paper we consider consensus protocols where an agent might not be influenced by any of his neighbors singularly taken, but could be sensitive to the simultaneous and coherent influence of two or more of them (joint-agent interaction). By abstracting the set of interactions as a Petri Net we provide a graph-theoretical characterization of the ability of the net to attain asymptotic consensus within the considered set-up

    A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering

    Full text link
    Large Liquid Argon TPC detectors in the range of multikton mass for neutrino and astroparticle physics require the extraction and treatment of signals from some 105 wires. In order to enlarge the throughtput of the DAQ system an on-line lossless data compression has been realized reducing almost a factor 4 the data flow. Moreover a trigger system based on a new efficient on-line identification algorithm of wire hits was studied, implemented on the actual ICARUS digital read- out boards and fully tested on the ICARINO LAr-TPC facility operated at LNL INFN Laboratory with cosmic-rays. Capability to trigger isolated low energy events down to 1 MeV visible energy was also demonstrated.Comment: 26 pages, 26 Figure; to be submitted to JINS

    An integrated approach for the analysis and modeling of road tunnel ventilation. Part I: Continuous measurement of the longitudinal airflow profile

    Get PDF
    The knowledge of the flow field inside road tunnels under normal operation, let alone fire conditions, is only approximate and partial. The reason is that while the full three-dimensional, unsteady problem is out of reach of numerical methods, on the other hand accurate measurement of the airflow in road and railway tunnels constitutes an extremely demanding task. The present work, structured as a twofold study, takes up the challenge and proposes an original integrated experimental and numerical approach for the analysis and modeling of flow inside a road tunnel and its ventilation systems, aiming at defining a methodology for the creation of “digital twins” of the system itself, on which advanced ventilation and smoke control strategies can be tested and fine-tuned. In this first part, an innovative experimental facility for the continuous acquisition of the longitudinal velocity profile along the whole length of a road tunnel has been designed and built. The facility consists of a survey rake with five bidirectional vane anemometers, which is mounted on a small electric vehicle that can travel through the tunnel at constant speed. This paper reports the design procedure of the measurement facility, with particular focus on the conception and realization of the vehicle carrying the survey rake. Results of the first experimental campaign carried out under the 11611 meters long Mont Blanc road tunnel are presented to corroborate the validity of the approach adopted and the accuracy of the measurement chain

    Dust remobilization in fusion plasmas under steady state conditions

    Full text link
    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions - direct lift-up, sliding, rolling - are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.Comment: 16 pages, 11 figures, 3 table
    • 

    corecore