6 research outputs found

    The Presence of Persistent Bovine Viral Diarrhea Virus Infection and a Novel Bosavirus in a Bison Herd

    Get PDF
    Objective Bovine viral diarrhea virus (BVDV) is a significant pathogen of cattle, leading to losses due to reproductive failure, respiratory disease and immune dysregulation. An investigation was conducted in an American bison (Bison bison) herd dealing with reproductive issues in 2018-2019 calving season to determine likely cause of the losses

    Harnessing the Genetic Plasticity of Porcine Circovirus Type 2 to Target Suicidal Replication

    No full text
    Porcine circovirus type 2 (PCV2), the causative agent of a wasting disease in weanling piglets, has periodically evolved into several new subtypes since its discovery, indicating that the efficacy of current vaccines can be improved. Although a DNA virus, the mutation rates of PCV2 resemble RNA viruses. The hypothesis that recoding of selected serine and leucine codons in the PCV2b capsid gene could result in stop codons due to mutations occurring during viral replication and thus result in rapid attenuation was tested. Vaccination of weanling pigs with the suicidal vaccine constructs elicited strong virus-neutralizing antibody responses. Vaccination prevented lesions, body-weight loss, and viral replication on challenge with a heterologous PCV2d strain. The suicidal PCV2 vaccine construct was not detectable in the sera of vaccinated pigs at 14 days post-vaccination, indicating that the attenuated vaccine was very safe. Exposure of the modified virus to immune selection pressure with sub-neutralizing levels of antibodies resulted in 5 of the 22 target codons mutating to a stop signal. Thus, the described approach for the rapid attenuation of PCV2 was both effective and safe. It can be readily adapted to newly emerging viruses with high mutation rates to meet the current need for improved platforms for rapid-response vaccines

    Targeted Alteration of Antibody-Based Immunodominance Enhances the Heterosubtypic Immunity of an Experimental PCV2 Vaccine

    No full text
    Despite the availability of commercial vaccines which can effectively prevent clinical signs, porcine circovirus type 2 (PCV2) continues to remain an economically important swine virus, as strain drift, followed by displacement of new subtypes, occurs periodically. We had previously determined that the early antibody responses to the PCV2 capsid protein in infected pigs map to immunodominant but non-protective, linear B cell epitopes. In this study, two of the previously identified immunodominant epitopes were mutated in the backbone of a PCV2b infectious clone, to rationally restructure the immunogenic capsid protein. The rescued virus was used to immunize 3-week-old weanling piglets, followed by challenge with a virulent heterologous PCV2d strain. As expected, immunodominant antibody responses to the targeted epitopes were abrogated in vaccinated pigs, while a broadening of the virus neutralization responses was detected. Vaccinated pigs were completely protected against challenge viral replication, had reduced microscopic lesions in lymphoid organs and gained significantly more body weight when compared to unvaccinated pigs. Thus, the experimental PCV2 vaccine developed was highly effective against challenge, and, if adopted commercially, can potentially slow down or eliminate new strain creation

    Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model

    No full text
    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus
    corecore