4,923 research outputs found

    Parent and teacher attitudes to pharmacological management of medically diagnosed attention deficit primary school children

    Get PDF
    The purpose of this study was to compare the attitudes of parents and teachers to the use of pharmacological management or intervention for the child with ADHD in the classroom. Particular focus was placed on differences in attitude toward the use of stimulants, for the management of emotional/behavioural, cognitive/academic, social and classroom organizational behaviours of children with ADHD. Thirty female Western Australian primary school teachers and 90 female parents participated in the present investigation. Participants included: (a) parents of non-medicated children with ADHD, (b) parents of medicated children with ADHD, (c) teachers in regular primary schools, and (d) parents of non-affected children. These participants were given an attitude questionnaire to determine their attitudes towards the use of stimulant medications with children who have ADHD. Teachers held significantly less positive attitudes toward the pharmacological management of children with ADHD, than did the parents surveyed. Parents of medicated children with ADHD were significantly more positive in their attitudes towards pharmacological management, than were parents of non-medicated children with ADHD. Parents of medically diagnosed children with ADHD, collectively held significantly more positive attitudes toward pharmacological management for these children, than parents of non-affected children. Findings are discussed in relation to previous research, which suggests that differences in attitudes may be related to a respondent\u27s current knowledge and experiences with pharmacological management for children who have ADHD. Practical implications for parental support and education of teachers are outlined

    Power Spectra in a Zero-Range Process on a Ring: Total Occupation Number in a Segment

    Full text link
    We study the dynamics of density fluctuations in the steady state of a non-equilibrium system, the Zero-Range Process on a ring lattice. Measuring the time series of the total number of particles in a \emph{segment} of the lattice, we find remarkable structures in the associated power spectra, namely, two distinct components of damped-oscillations. The essential origin of both components is shown in a simple pedagogical model. Using a more sophisticated theory, with an effective drift-diffusion equation governing the stochastic evolution of the local particle density, we provide reasonably good fits to the simulation results. The effects of altering various parameters are explored in detail. Avenues for improving this theory and deeper understanding of the role of particle interactions are indicated.Comment: 21 pages, 15 figure

    Identifying communities by influence dynamics in social networks

    Full text link
    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear community involvement that serve as a proxy between several communities and are equally as important. We run the algorithm for several real social networks which we believe represent a good fraction of the wide body of social networks and discuss the results including other possible applications.Comment: 10 pages, 6 figure

    Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears

    Get PDF
    Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges

    Chiral and Parity Symmetry Breaking for Planar Fermions: Effects of a Heat Bath and Uniform External Magnetic Field

    Full text link
    We study chiral symmetry breaking for relativistic fermions, described by a parity violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion anti-fermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→−iEB\to-iE.Comment: 9 pages, 10 figure

    Cortical circuit alterations precede motor impairments in Huntington's disease mice

    Get PDF
    Huntington's disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronic in vivo two-photon calcium imaging to longitudinally monitor the activity of identified single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in cortical network function, with an increase in activity that affects a large fraction of cells and occurs rather abruptly within one week, preceeding the onset of motor defects. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and human HD autopsy cases reveal a reduction in perisomatic inhibitory synaptic contacts on layer 2/3 pyramidal cells. Taken together, our study provides a time-resolved description of cortical network dysfunction in behaving HD mice and points to disturbed excitation/inhibition balance as an important pathomechanism in HD

    Quantum two-photon algebra from non-standard U_z(sl(2,R)) and a discrete time Schr\"odinger equation

    Full text link
    The non-standard quantum deformation of the (trivially) extended sl(2,R) algebra is used to construct a new quantum deformation of the two-photon algebra h_6 and its associated quantum universal R-matrix. A deformed one-boson representation for this algebra is deduced and applied to construct a first order deformation of the differential equation that generates the two-photon algebra eigenstates in Quantum Optics. On the other hand, the isomorphism between h_6 and the (1+1) Schr\"odinger algebra leads to a new quantum deformation for the latter for which a differential-difference realization is presented. From it, a time discretization of the heat-Schr\"odinger equation is obtained and the quantum Schr\"odinger generators are shown to be symmetry operators.Comment: 12 pages, LaTe

    Elaborations on the String Dual to N=1 SQCD

    Full text link
    In this paper we make further refinements to the duality proposed between N=1 SQCD and certain string (supergravity plus branes) backgrounds, working in the regime of comparable large number of colors and flavors. Using the string theory solutions, we predict different field theory observables and phenomena like Seiberg duality, gauge coupling and its running, the behavior of Wilson and 't Hooft loops, anomalous dimensions of the quark superfields, quartic superpotential coupling and its running, continuous and discrete anomaly matching. We also give evidence for the smooth interpolation between higgsed and confining vacua. We provide several matchings between field theory and string theory computations.Comment: 44 pages, 6 figures. References added, minor rewritings, published versio

    The Digital Life of Walkable Streets

    Full text link
    Walkability has many health, environmental, and economic benefits. That is why web and mobile services have been offering ways of computing walkability scores of individual street segments. Those scores are generally computed from survey data and manual counting (of even trees). However, that is costly, owing to the high time, effort, and financial costs. To partly automate the computation of those scores, we explore the possibility of using the social media data of Flickr and Foursquare to automatically identify safe and walkable streets. We find that unsafe streets tend to be photographed during the day, while walkable streets are tagged with walkability-related keywords. These results open up practical opportunities (for, e.g., room booking services, urban route recommenders, and real-estate sites) and have theoretical implications for researchers who might resort to the use social media data to tackle previously unanswered questions in the area of walkability.Comment: 10 pages, 7 figures, Proceedings of International World Wide Web Conference (WWW 2015

    A real-space, rela-time method for the dielectric function

    Full text link
    We present an algorithm to calculate the linear response of periodic systems in the time-dependent density functional thoery, using a real-space representation of the electron wave functions and calculating the dynamics in real time. The real-space formulation increases the efficiency for calculating the interaction, and the real-time treatment decreases storage requirements and the allows the entire frequency-dependent response to be calculated at once. We give as examples the dielectric functions of a simple metal, lithium, and an elemental insulator, diamond.Comment: 17 pages, Latex, 5 figure
    • …
    corecore