88 research outputs found

    Activity of bacterial seed endophytes of landrace durum wheat for control of Fusarium foot rot

    Get PDF
    Five bacterial endophytic isolates obtained from durum wheat seeds (Iandrace "Timilia reste nere") and identified as belonging to Pantoea (isolates A1, F7, F15 and GI) and Paenibacillus (isolate B) genera on the basis of 16S rDNA gene sequences, were assayed in vitro and in vivo for their ability to inhibit Fusarium culmorum growth and the disease (Fusarium foot rot) it causes in durum wheat. All isolates significantly reduced in vitro growth of F. culmorum in comparison with the control. After 120 hours of incubation, isolates B and GI showed the greatest mycelial growth inhibition, i.e., respectively, 76 and 74%. When durum wheat "Simeto" seeds were treated with bacterial isolates singly or in combinations and then inoculated with F. culmorum, all treatments with endophytes showed increased, but not statistically significant, seed germination. Except for isolate Al, all bacterial isolates stimulated vegetative parameters of durum wheat seedlings. Mixture of isolates F7 + F15 was the most effective in improving shoot height (+94%), root length (+47%) and vigour index (+81%). Mixture of isolates A1 + B reduced Fusarium foot rot incidence (-21%) and severity (-30%), and isolate A1 reduced incidence (-15%) and severity (-16%) of the disease. These results indicate potential of bacterial seed endophytes, identified in this study, for control of Fusarium foot rot and suggest that bacterial seed endophytes may provide a new biocontrol agent for an environmentally sustainable durum wheat disease management programme

    Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study

    Get PDF
    A load research project by the Florida Power Corporation (FPC) is monitoring 200 residences in Central Florida, collecting detailed end-use load data. The monitoring is being performed to better estimate the impact of FPC's load control program, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis

    Fluid balance and urine volume are independent predictors of mortality in acute kidney injury.

    Get PDF
    INTRODUCTION: In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI. METHODS: We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression. RESULTS: Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50\%. Non-surviving AKI patients had higher MFB (1.31 ± 1.24 versus 0.17 ± 0.72 L/day; P <0.001) and lower MUV (1.28 ± 0.90 versus 2.35 ± 0.98 L/day; P <0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95\%CI 1.33 to 2.09; <0.001) and MUV (adjusted HR 0.47 per L/day, 95\%CI 0.33 to 0.67; <0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95\%CI 0.12 to 0.52; <0.001). CONCLUSIONS: In this multicenter ICU study, a higher fluid balance and a lower urine volume were both important factors associated with 28-day mortality of AKI patients

    Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells

    Get PDF
    Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.Peer reviewe

    Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2

    Get PDF
    Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans

    Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes

    Get PDF
    Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement

    Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    Get PDF
    ) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells

    Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity

    Get PDF
    Type 2 diabetes mellitus (T2DM) is characterized by defects in both insulin sensitivity and glucose-stimulated insulin secretion (GSIS) and is often accompanied by obesity. In this study, we show that disruption of thioredoxin binding protein-2 (TBP-2, also called Txnip) in obese mice (ob/ob) dramatically improves hyperglycaemia and glucose intolerance, without affecting obesity or adipocytokine concentrations. TBP-2-deficient ob/ob mice exhibited enhanced insulin sensitivity with activated insulin receptor substrate-1/Akt signalling in skeletal muscle and GSIS in islets compared with ob/ob mice. The elevation of uncoupling protein-2 (UCP-2) expression in ob/ob islets was downregulated by TBP-2 deficiency. TBP-2 overexpression suppressed glucose-induced adenosine triphosphate production, Ca2+ influx and GSIS. In β-cells, TBP-2 enhanced the expression level and transcriptional activity of UCP-2 by recruitment of peroxisome proliferator-activated receptor-γ co-activator-1α to the UCP-2 promoter. Thus, TBP-2 is a key regulatory molecule of both insulin sensitivity and GSIS in diabetes, raising the possibility that inhibition of TBP-2 may be a novel therapeutic approach for T2DM

    TRPM2-mediated rise in mitochondrial Zn2+ promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents

    No full text
    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca2+ and Zn2+, chelation of Zn2+ alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn2+, palmitate caused a rise in mitochondrial Zn2+, leading to Zn2+-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca2+ caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn2+. These results indicate a novel role for Zn2+ in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn2+, Drp-1 recruitment and abnormal mitochondrial fission

    Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies

    Get PDF
    The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states
    corecore