18 research outputs found

    pH-Induced Changes in the SERS Spectrum of Thiophenol at Gold Electrodes during Cyclic Voltammetry

    Get PDF
    Thiophenol is a model compound used in the study of self-assembly of arylthiols on gold surfaces. In particular, changes in the surface-enhanced Raman scattering (SERS) spectra of these self-assembled monolayers (SAMs) with a change of conditions have been ascribed to, for example, differences in orientation with respect to the surface, protonation state, and electrode potential. Here, we show that potential-induced changes in the SERS spectra of SAMs of thiophenol on electrochemically roughened gold surfaces can be due to local pH changes at the electrode. The changes observed during the potential step and cyclic voltammetry experiments are identical to those induced by acid–base switching experiments in a protic solvent. The data indicate that the potential-dependent spectral changes, assigned earlier to changes in molecular orientation with respect to the surface, can be ascribed to changes in the pH locally at the electrode. The pH at the electrode can change as much as several pH units during electrochemical measurements that reach positive potentials where oxidation of adventitious water can occur. Furthermore, once perturbed by applying positive potentials, the pH at the electrode takes considerable time to recover to that of the bulk solution. It is noted that the changes in pH even during cyclic voltammetry in organic solvents can be equivalent to the addition of strong acids, such as CF3SO3H, and such effects should be considered in the study of the redox chemistry of pH-sensitive redox systems and potential-dependent SERS in particular

    Electrochemical Ring-Opening and -Closing of a Spiropyran

    Get PDF
    The bistability of molecular switches is an essential characteristic in their use as functional components in molecular-based devices and machines. For photoswitches, light-driven switching between two stable states proceeds via short-lived changes of the bond order in electronically excited states. Here, bistable switching of a ditertbutyl-substituted spiropyran photoswitch is instead demonstrated by oxidation and subsequent reduction in an overall four-state cycle. The spiropyran structure chosen has reduced sensitivity to the effect of secondary electrochemical processes such as H+ production and provides transient access to a decreased thermal Z-E isomerization barrier in the one electron oxidized state, akin to that achieved in the corresponding photochemical path. Thus, we show that the energy needed for switching spiropyrans to the merocyanine form on demand, typically delivered by a photon, can instead be provided electrochemically. This opens up further opportunities for the utilization of spiropyrans in electrically controlled applications and devices

    Excited state dynamics in unidirectional photochemical molecular motors

    Get PDF
    Unidirectional photochemically driven molecular motors (PMMs) convert the energy of absorbed light into continuous rotational motion. As such they are key components in the design of molecular machines. The prototypical and most widely employed class of PMMs is the overcrowded alkenes, where rotational motion is driven by successive photoisomerization and thermal helix inversion steps. The efficiency of such PMMs depends upon the speed of rotation, determined by the rate of ground state thermal helix inversion, and the quantum yield of photoisomerization, which is dependent on the excited state energy landscape. The former has been optimized by synthetic modification across three generations of overcrowded alkene PMMs. These improvements have often been at the expense of photoisomerization yield, where there remains room for improvement. In this perspective we review the application of ultrafast spectroscopy to characterize the excited state dynamics in PMMs. These measurements lead to a general mechanism for all generations of PMMs, involving subpicosecond decay of a Franck–Condon excited state to populate a dark excited state which decays within picoseconds via conical intersections with the electronic ground state. The model is discussed in the context of excited state dynamics calculations. Studies of PMM photochemical dynamics as a function of solvent suggest exploitation of intramolecular charge transfer and solvent polarity as a route to controlling photoisomerization yield. A test of these ideas for a first generation motor reveals a high degree of solvent control over isomerization yield. These results suggest a pathway to fine control over the performance of future PMMs

    Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal-Organic Framework Enabled by Energy Transfer

    Get PDF
    The visible-light-driven rotation of an overcrowded alkene-based molecular motor strut in a dual-function metal-organic framework (MOF) is reported. Two types of functional linkers, a palladium-porphyrin photosensitizer and a bispyridine-derived molecular motor, were used to construct the framework capable of harvesting low-energy green light to power the rotary motion. The molecular motor was introduced in the framework using the postsynthetic solvent-assisted linker exchange (SALE) method, and the structure of the material was confirmed by powder (PXRD) and single-crystal X-ray (SC-XRD) diffraction. The large decrease in the phosphorescence lifetime and intensity of the porphyrin in the MOFs upon introduction of the molecular motor pillars confirms efficient triplet-to-triplet energy transfer between the porphyrin linkers and the molecular motor. Near-infrared Raman spectroscopy revealed that the visible light-driven rotation of the molecular motor proceeds in the solid state at rates similar to those observed in solution

    <i>In situ</i> EPR and Raman spectroscopy in the curing of bis-methacrylate-styrene resins

    Get PDF
    The curing of bis-methacrylate-styrene resins initiated by the cobalt catalyzed decomposition of cumyl hydroperoxide is monitored at ambient temperatures in situ by EPR and Raman spectroscopy. EPR spectroscopy shows the appearance of organic radicals after ca. 1 h from initiation with an increase in intensity from both polystyrene and methacrylate based radical species over a further ca. 2 h period to reach a maximum spin concentration of ca. 2-3 mM. Alkene conversion to polymer was monitored by Raman spectroscopy in real time in situ with EPR spectroscopy and reveals that the appearance of the radical signals is first observed only as the conversion approaches its maximum extent (70% at room temperature), i.e., the resin reaches a glass-like state. The radicals persist for several months on standing at room temperature. Flash frozen samples (77 K) did not show EPR signals within 1 h of initiation. The nature of the radicals responsible for the EPR spectra observed were explored by DFT methods and isotope labelling experiments (D8-styrene) and correspond to radicals of both methacrylate and polystyrene. Combined temperature dependent EPR and Raman spectroscopy shows that conversion increases rapidly upon heating of a cured sample, reaching full conversion at 80 °C with initially little effect on the EPR spectrum. Over time (i.e. subsequent to reaching full conversion of alkene) there was a small but clear increase in the EPR signal due to the methacrylate based radicals and minor decrease in the signal due to the polystyrene based radicals. The appearance of the radical signals as the reaction reaches completion and their absence in samples flash frozen before polymerization has halted, indicate that the observed radicals are non-propagating. The formation of the radicals due to stress within the samples is excluded. Hence, the observed radicals are a representative of the steady state concentration of radicals present in the resin over the entire timespan of the polymerization. The data indicate that the lack of EPR signals is most likely due to experimental aspects, in particular spin saturation, rather than low steady state concentrations of propagating radicals during polymerization.</p

    Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor

    Get PDF
    Efficient photomolecular motors will be critical elements in the design and development of molecular machines. Optimisation of the quantum yield for photoisomerisation requires a detailed understanding of molecular dynamics in the excited electronic state. Here we probe the primary photophysical processes in the archetypal first generation photomolecular motor, with sub-50 fs time resolved fluorescence spectroscopy. A bimodal relaxation is observed with a 100 fs relaxation of the Franck-Condon state to populate a red-shifted state with a reduced transition moment, which then undergoes multi-exponential decay on a picosecond timescale. Oscillations due to the excitation of vibrational coherences in the S 1 state are seen to survive the ultrafast structural relaxation. The picosecond relaxation reveals a strong solvent friction effect which is thus ascribed to torsion about the C−C axle. This behaviour is contrasted with second generation photomolecular motors; the principal differences are explained by the existence of a barrier on the excited state surface in the case of the first-generation motors which is absent in the second generation. These results will help to provide a basis for designing more efficient molecular motors in the future

    Reaction of (N4Py)Fe with H<sub>2</sub>O<sub>2</sub> and the relevance of its Fe(IV)=O species during and after H<sub>2</sub>O<sub>2</sub> disproportionation

    Get PDF
    The catalytic disproportionation of by non-heme Fe(II) complexes of H2O2 the ligand N4Py (1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) and the formation and reactivity of Fe(III)-OOH and Fe(IV)=O species is studied by UV/Vis absorption, NIR luminescence, (resonance) Raman and headspace Raman spectroscopy, 1O2 trapping and DFT methods. Earlier DFT studies indicated that disproportionation of H2O2 catalysed by Fe(II)-N4Py complexes produce only 3O2, however, only the low-spin state pathway was considered. In the present study, DFT calculations predict two pathways for the reaction between Fe(III)-OOH and H2O2, both of which yield 3O2/H2O2 and involve either the S=1/2 or the S=3/2 spin state, with the latter being spin forbidden. The driving force for both pathways are similar, however, a minimal energy crossing point (MECP) provides a route for the formally spin forbidden reaction. The energy gap between the reaction intermediate and the MECP is lower than the barrier across the non-adiabatic channel. The formation of 3O2 only is confirmed experimentally in the present study through 1O2 trapping and NIR luminescence spectroscopy. However, attempts to use the 1O2 probe (α -terpinene) resulted in initiation of auto-oxidation rather than formation of the expected endoperoxide, which indicated formation of OH radicals from Fe(III)-OOH, e. g., through O−O bond homolysis together with saturation of methanol with 3O2. Microkinetic modelling of spectroscopic data using rate constants determined earlier, reveal that there is another pathway for Fe(III)-OOH decomposition in addition to competition between the reaction of Fe(III)-OOH with H2O2 and homolysis to form Fe(IV)=O and hydroxyl radical. Notably, after all H2O2 is consumed the decay of the Fe(III)-OOH species is predominantly through a second order self reaction (with Fe(III)-OOH). The conclusion reached is that the rate of O−O bond homolysis in the Fe(III)-OOH species to form Fe(IV)=O and an hydroxyl radical is too low to be responsible for the observed oxidation of organic substrates.</p

    Reaction of (N4Py)Fe with H<sub>2</sub>O<sub>2</sub> and the relevance of its Fe(IV)=O species during and after H<sub>2</sub>O<sub>2</sub> disproportionation

    Get PDF
    The catalytic disproportionation of by non-heme Fe(II) complexes of H2O2 the ligand N4Py (1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) and the formation and reactivity of Fe(III)-OOH and Fe(IV)=O species is studied by UV/Vis absorption, NIR luminescence, (resonance) Raman and headspace Raman spectroscopy, 1O2 trapping and DFT methods. Earlier DFT studies indicated that disproportionation of H2O2 catalysed by Fe(II)-N4Py complexes produce only 3O2, however, only the low-spin state pathway was considered. In the present study, DFT calculations predict two pathways for the reaction between Fe(III)-OOH and H2O2, both of which yield 3O2/H2O2 and involve either the S=1/2 or the S=3/2 spin state, with the latter being spin forbidden. The driving force for both pathways are similar, however, a minimal energy crossing point (MECP) provides a route for the formally spin forbidden reaction. The energy gap between the reaction intermediate and the MECP is lower than the barrier across the non-adiabatic channel. The formation of 3O2 only is confirmed experimentally in the present study through 1O2 trapping and NIR luminescence spectroscopy. However, attempts to use the 1O2 probe (α -terpinene) resulted in initiation of auto-oxidation rather than formation of the expected endoperoxide, which indicated formation of OH radicals from Fe(III)-OOH, e. g., through O−O bond homolysis together with saturation of methanol with 3O2. Microkinetic modelling of spectroscopic data using rate constants determined earlier, reveal that there is another pathway for Fe(III)-OOH decomposition in addition to competition between the reaction of Fe(III)-OOH with H2O2 and homolysis to form Fe(IV)=O and hydroxyl radical. Notably, after all H2O2 is consumed the decay of the Fe(III)-OOH species is predominantly through a second order self reaction (with Fe(III)-OOH). The conclusion reached is that the rate of O−O bond homolysis in the Fe(III)-OOH species to form Fe(IV)=O and an hydroxyl radical is too low to be responsible for the observed oxidation of organic substrates.</p

    Observation of Ultrafast Coherence Transfer and Degenerate States with Polarization-Controlled Two-Dimensional Electronic Spectroscopy

    Get PDF
    Optical spectroscopy is a powerful tool to interrogate quantum states of matter. We present simulation results for the cross-polarized two-dimensional electronic spectra of the light-harvesting system LH2 of purple bacteria. We identify a spectral feature on the diagonal, which we assign to ultrafast coherence transfer between degenerate states. The implication for the interpretation of previous experiments on different systems and the potential use of this feature are discussed. In particular, we foresee that this kind of feature will be useful for identifying mixed degenerate states and for identifying the origin of symmetry breaking disorder in systems like LH2. Furthermore, this may help identify both vibrational and electronic states in biological systems such as proteins and solid-state materials such as hybrid perovskites

    Photophysics of first-generation photomolecular motors: Resolving roles of temperature, friction, and medium polarity

    Get PDF
    Light-driven unidirectional molecular rotary motors have the potential to power molecular machines. Consequently, optimizing their speed and efficiency is an important objective. Here, we investigate factors controlling the photochemical yield of the prototypical unidirectional rotary motor, a sterically overcrowded alkene, through detailed investigation of its excited-state dynamics. An isoviscosity analysis of the ultrafast fluorescence decay data resolves friction from barrier effects and reveals a 3.4 ± 0.5 kJ mol−1 barrier to excited-state decay in nonpolar media. Extension of this analysis to polar solvents shows that this barrier height is a strong function of medium polarity and that the decay pathway becomes near barrierless in more polar media. Thus, the properties of the medium can be used as a route for controlling the motor’s excited-state dynamics. The connection between these dynamics and the quantum yield of photochemical isomerization is probed. The photochemical quantum yield is shown to be a much weaker function of solvent polarity, and the most efficient excited-state decay pathway does not lead to a strongly enhanced quantum yield for isomerization. These results are discussed in terms of the solvent dependence of the complex multidimensional excited-state reaction coordinate
    corecore