

University of Groningen

Reaction of (N4Py)Fe with $\rm H_2O_2$ and the relevance of its Fe(IV)=O species during and after $\rm H_2O_2$ disproportionation

de Roo, C. Maurits; Sardjan, Andy S.; Postmus, Roy; Swart, Marcel; Hage, Ronald; Browne, Wesley R.

Published in: ChemCatChem

DOI:

10.1002/cctc.202301594

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Version created as part of publication process; publisher's layout; not normally made publicly available

Publication date: 2024

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

de Roo, C. M., Sardjan, A. S., Postmus, R., Swart, M., Hage, R., & Browne, W. R. (2024). Reaction of (N4Py)Fe with H.O. and the relevance of its Fe(IV)=O species during and after H.O. disproportionation. *ChemCatChem*, ²16(11), Article e202301594. https://doi.org/10.1002/cctc.202301594²

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Check for updates

www.chemcatchem.org

Reaction of (N4Py)Fe with H_2O_2 and the relevance of its Fe(IV) = O species during and after H_2O_2 disproportionation

C. Maurits de Roo,^[a] Andy S. Sardjan,^[a] Roy Postmus,^[a] Marcel Swart,^[b, c] Ronald Hage,*^[a] and Wesley R. Browne*^[a]

The catalytic disproportionation of by non-heme Fe(II) complexes of H₂O₂ the ligand N4Py (1,1-bis(pyridin-2-yl)-N,Nbis(pyridin-2-ylmethyl)methanamine) and the formation and reactivity of Fe(III)-OOH and Fe(IV) = O species is studied by UV/ Vis absorption, NIR luminescence, (resonance) Raman and headspace Raman spectroscopy, ¹O₂ trapping and DFT methods. Earlier DFT studies indicated that disproportionation of H₂O₂ catalysed by Fe(II)-N4Py complexes produce only ³O₂, however, only the low-spin state pathway was considered. In the present study, DFT calculations predict two pathways for the reaction between Fe(III)-OOH and H₂O₂, both of which yield $^3O_2/H_2O_2$ and involve either the S=1/2 or the S=3/2 spin state, with the latter being spin forbidden. The driving force for both pathways are similar, however, a minimal energy crossing point (MECP) provides a route for the formally spin forbidden reaction. The energy gap between the reaction intermediate and the MECP is lower than the barrier across the non-adiabatic channel. The formation of ³O₂ only is confirmed experimentally

in the present study through 102 trapping and NIR luminescence spectroscopy. However, attempts to use the ¹O₂ probe (α -terpinene) resulted in initiation of auto-oxidation rather than formation of the expected endoperoxide, which indicated formation of OH radicals from Fe(III)-OOH, e.g., through O-O bond homolysis together with saturation of methanol with ³O₂. Microkinetic modelling of spectroscopic data using rate constants determined earlier, reveal that there is another pathway for Fe(III)-OOH decomposition in addition to competition between the reaction of Fe(III)-OOH with H₂O₂ and homolysis to form Fe(IV) = O and hydroxyl radical. Notably, after all H_2O_2 is consumed the decay of the Fe(III)-OOH species is predominantly through a second order self reaction (with Fe(III)-OOH). The conclusion reached is that the rate of O-O bond homolysis in the Fe(III)-OOH species to form Fe(IV) = O and an hydroxyl radical is too low to be responsible for the observed oxidation of organic substrates.

Introduction

 H_2O_2 is a widely used terminal oxidant in organic transformations since it is kinetically stable, despite being a'high energy' reagent, and is atom efficient with only O_2 and H_2O as by-products. The decomposition of H_2O_2 is an important process in biology, and nature has evolved mechanisms to deactivate it without production of reactive oxygen species.^[1] At low concentrations of H_2O_2 , oxidases operate effectively with

[a] C. Maurits de Roo<u>0009-0004-1493-9809</u>, A. S. Sardjan, R. Postmus, Prof. Dr. R. Hage, Prof. Dr. W. R. Browne Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands E-mail: r.hage@rug.nl w.r.browne@rug.nl

Homepage: 0009-0004-1493-9809

- [b] Prof. Dr. M. Swart IQCC and Department of Chemistry, Universitat de Girona, ParcUdG, c/ Emili Grahit 91, 17003, Girona, Spain
- [c] Prof. Dr. M. Swart ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Supporting information for this article is available on the WWW under https://doi.org/10.1002/cctc.202301594
- © 2024 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

two-electron reductants, in much the same way as H₂O₂ is used as an oxidant in transition metal catalysed reactions through generation of reactive species that are then used to oxidise organic substrates. [2] At high concentrations of H₂O₂ its role as a substrate for these same species can be observed and is indeed how organisms deal with H₂O₂ under those circumstances, through enzyme catalysed disproportionation of H₂O₂ to O₂ and water (i.e. catalases).[3] The active center of these enzymes typically includes a transition metal center, e.g., a heme iron center that reacts with H₂O₂ by heterolytic cleavage of the O-O bond to form an Fe(IV) = O species (Compound I) and water. [3] Although this deactivates one molecule of H₂O₂, the resulting high valent species can engage in one or two-electron oxidation of substrates, including H₂O₂ to liberate O₂, recovering the initial state. Enzymatic deactivation of H₂O₂ generally seeks to avoid production of reactive oxygen species such as hydroxyl radicals and ¹O₂. Replicating this selectivity is a challenge in biomimetic systems where the focus is typically to harness the oxidising power of H₂O₂ towards oxidation of organic substrates.

In contrast to iron dependent catalases, synthetic non-heme iron complexes based on pyridyl-amine based ligands, such as TPA, BPMEN, and N4Py (Figure 1), and indeed the antibiotic Fe-Bleomycin, rapidly undergo ligand exchange and/or oxidation reactions to reach a meta-stable Fe(III)-OOH species, which are proposed to form Fe(IV)=O species through homolytic cleavage of the O–O bond. [4,5] It is these latter species that are

wnloaded from https://chemistry-europe.onlinelibrary.wiely.com/doi/10.1002/ccc.20230194 by Universiteitsibliotheek, Wiley Online Library on [18/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Figure 1. Structures of the ligands TPA, N4Py, and BPMEN.

deemed responsible for the oxidation of organic substrates.^[6,7] This paradigm mechanism has recently shown exceptions, such as in the (transient) formation of Fe(V) = O species, [8,9] in the direct dihydroxylation of alkenes with Fe(III)-OOH species reported recently by the Nam group, [10] and in olefin epoxidation and alkene hydroxylation with a diferric peroxo intermediate reported by the Que group.[11] Additionally, control of the formation of either Fe(IV) = O or Fe(III)-OOH species using a phenol-bearing ligand and base was reported by the Banse group.[12,13]

reported^[14] Recently, we that the complex $[Fe(II)(N_4Py)(CH_3CN)]^{2+}$ (1), where N4Py is 1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine),[4,5,15,16] was an effective catalyst for the disproportionation of H₂O₂ into O₂ and H₂O in methanol. 1 undergoes solvolysis in methanol to form $[Fe(II)(N_4Py)(OCH_3)]^+$ (2) and upon addition of H_2O_2 rapidly forms $[Fe(III)(N_4Py)(OOH)]^{2+}$ (3). We demonstrated that while the homolytic cleavage of the O–O bond in to yield an Fe(IV) = O species (4) is generally assumed, this last process (Figure 2 pathway b) is not kinetically competent and instead H₂O₂ reacts directly with 3 to form $[Fe(III)(N_4Py)(OCH_3)]^{2+}$ (5 a), H₂O and O₂, (Figure 2 pathway a). DFT calculations indicated that O2 was formed as ${}^{3}O_{2}$ in a $S = \frac{1}{2}$ state that results from two unpaired electrons on ${}^{3}O_{2}$ ($m_{s}=1$) coupled to one unpaired electron on iron $(m_s = -\frac{1}{2})$. Nevertheless, the formation of ${}^{1}O_2$ should be excluded experimentally due to the latter's ability to initiate undesirable reactions. Disproportionation of H₂O₂ is undesirable in the context of catalytic oxidations of organic substrates due to its impact on efficiency, and a common approach is to use a

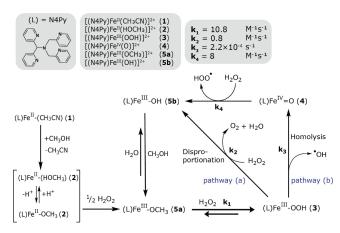


Figure 2. Proposed mechanism for reaction of 1 with excess H₂O₂ in methanol.

low steady state concentration of H2O2 to increase atom efficiency. Such an approach appeared to be effective in regard to the oxidation of methanol to methanal by H_2O_2 and $\mathbf{1}$. [14] However, the generation of reactive oxygen species, not least hydroxyl radicals and ¹O₂ can impact selectivity, or in the case of ¹O₂, enable new reactions with H₂O₂.

In the present contribution we focus on the mechanism by which 3 reacts with H_2O_2 . The possible generation of 1O_2 and the rate constant for homolysis of the O-O bond of 3 are investigated. Two approaches, a chemical probe and chemiluminescence, were taken to establish whether or not ¹O₂ is formed during disproportionation. We revisit the DFT studies by considering minimum energy crossing points (MECPs) between the doublet and quartet surfaces. Furthermore, we use a microkinetic model based on the mechanism described in Figure 2 to establish the significance of pathway b (O-O bond homolysis) overall and thereby the origin of oxidation products of methanol.

Results

The decomposition of H₂O₂ to water and oxygen by 1 was studied earlier by solution and head space Raman spectroscopy, [14] where a discrepancy in mass balance was noted (see SI section 1 experimental section for details). The decomposition is revisited here to establish a full mass balance in the disproportionation reaction before addressing experimentally and theoretically the spin state of the O₂ produced, and finally kinetic analyses to build a microkinetic model for the reaction.

O₂ release during decomposition of H₂O₂ by 1

In line monitoring of both the headspace and reaction mixture with Raman spectroscopy allows for simultaneous quantitative comparison of the extent of consumption of H₂O₂ and the amount of ³O₂ released into the head space (Figure 3). It should be noted, in regard to discussion below, that even were ¹O₂ to be formed during the reaction, it relaxes to 3O_2 within ca. 9.5 μ s of formation, [17,18] and hence the operando Raman spectroscopy cannot be used for (dis)proving the presence of ¹O₂ as one of the products in the reaction. The amount of ³O₂ liberated, calculated from the change in intensity of the Raman band of $^3\text{O}_2$ (*i.e.*the $\tilde{v}_{str.OO}$ band at 1555 cm $^{-1}$, Figure 3A), can be compared directly with the decrease in intensity of the $\tilde{\nu}_{\textit{str.OO}}$ band of H₂O₂ at 872 cm⁻¹ (Figure 3B) in the reaction mixture, and from which the absolute amounts of ³O₂ formed and H₂O₂ consumed over time can be determined (Figure 3C, see SI section 1 for determination of ${}^{3}O_{2}$ concentration, Figures S1–4). Although a full mass balance is obtained towards the end of the reaction and the decomposition of H₂O₂ over time shows the expected pseudo-first order behavior, the increase in concentration of O₂ in the headspace appears to lag that of consumption of H₂O₂. This delay in response is likely a consequence of the experimental conditions as the solution

0.075 0.060

0.045

0.030

0.015

0.000

0.015

mmol O₂

5000

Raman intensity integral

4000

H₂O₂ in liquid phase

3000

50

40 30

20

10

0

1000

added from https://chemisty-guerope.onlinelibrary.viley.com/doi/10.1002/ctct.202301594 by Universite its bibliotheek, Wiley Online Library on [18/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

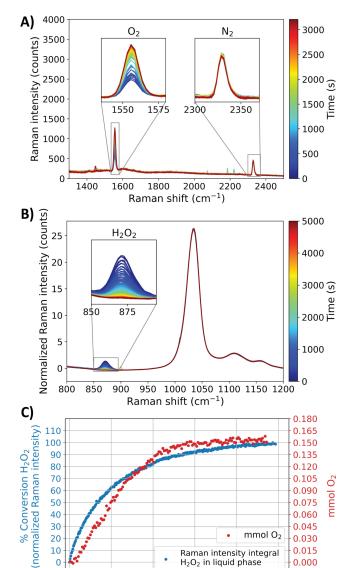
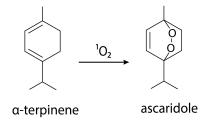
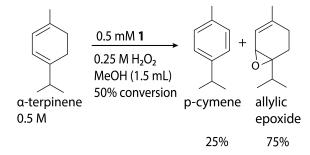


Figure 3. Decomposition of H₂O₂ catalysed by 1 in methanol. A) Head space Raman spectra (λ_{exc} 785 nm) over time. The 3O_2 and N_2 bands are shown as insets. B) Raman spectra ($\lambda_{\rm exc}$ 785 nm) of the reaction mixture. The $\tilde{\nu}_{\rm str,OO}$ band of H₂O₂ is shown as an inset. C) Conversion of H₂O₂ and amount of ³O₂ formed over time. Conditions: 0.5 mM 1, 200 mM H₂O₂ in 1.5 mL MeOH.

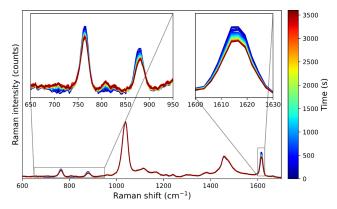
Time (s)


2000

was not stirred during the reaction, and hence due in small part to the delay reaching saturation of the methanol in O₂ and the build up of bubbles of oxygen in the solution and in part due to lack of convective forces. Experiments with the photosensitiser [Ru(II)(bipy)₃](PF₆)₂, vide infra, confirm that the solution is saturated in oxygen rapidly after addition of H₂O₂. Although the evolution of ³O₂ can be determined readily by head space Raman spectroscopy, detecting ¹O₂ formed is more challenging and indirect methods (¹O₂ trapping) were employed.


Trapping of ${}^{1}O_{2}$ with α -terpinene

 α -terpinene is a widely used probe for determining formation of ${}^{1}O_{2}$ in solution, ${}^{[19-21]}$ as the latter is a dienophile in a cycloaddition to form the endoperoxide ascaridole (Figure 4A). The disproportionation of excess H₂O₂ was followed by Raman spectroscopy (both liquid phase and head space) in the presence of α -terpinene (Figure 5, and Figure S5). Under these reaction conditions 22% of the α -terpinene was converted to another compound within 1 h. However, rather than increasing, the Raman band of ³O₂ in the head space spectrum decreased over the course of the reaction also (Figure 6). Comparison of the intensity of the $\tilde{\nu}_{\text{C=C}}$ band of $\alpha\text{-terpinene}$ and the O–O stretch of 3O_2 over time shows that the amount of 3O_2 in the head space increases slightly in the first few hundred seconds


A) Cycloaddition with ¹O₂

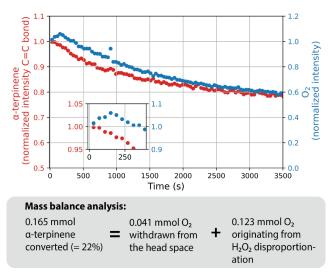

B) Oxidation with Fell(N4Py)/H₂O₂

Figure 4. A) Cycloaddition of ${}^{1}O_{2}$ to α -terpinene yielding an endoperoxide (ascaridole). B) Observed oxidation of α -terpinene with the $1/H_2O_2$ system. 0.52 mM 1, 0.25 M H_2O_2 , and 0.5 M lpha-terpinene in methanol at 19 °C.

Figure 5. Raman spectra ($\lambda_{\rm exc}$ 1064 nm) over 1 h of the reaction of α terpinene in methanol with H₂O₂ and 1. See Figure S7 for the corresponding head space Raman spectra. Conditions: 0.5 mM 1, 165 mM H_2O_2 and 0.5 M lphaterpinene in methanol at 19°C.

Figure 6. Normalized Raman intensity over time of the $\nu_{str,C=C}$ band of α -terpinene (red) and the $\nu_{O=O}$ band of 3O_2 (blue, recorded from the head space). Mass balance analysis shows that the amount of converted α -terpinene equals the total amount of converted 3O_2 . Conditions: 0.5 mM 1, 165 mM H_2O_2 and 0.5 M α -terpinene in methanol at 19 °C.

(inset of Figure 6), as expected due to disproportionation of H₂O₂, but thereafter decreases to approximately half of its original amount, i.e., ³O₂ was consumed from head space. In contrast, the intensity of the $\tilde{\nu}_{\mathrm{C=C}}$ band of $\alpha\text{-terpinene}$ is unchanged over the initial period (lag time) and only thereafter is conversion observed, which tracks closely the loss of 3O_2 from the headspace. Quantification of 3O_2 in the head space indicates that the 3O2 that is consumed from the head space (0.041 mmol) corresponds to the difference between the amount of α -terpinene converted (0.165 mmol) and the amount of ³O₂ expected to be liberated by H₂O₂ disproportionation (0.123 mmol, i.e., 165 mM H_2O_2 in a 1.5 mL reaction mixture gives 0.247 mmol H₂O₂. Considering that two molecules of H₂O₂ result into one molecule of 3O_2 ; 0.247/2 = 0.123 mmol 3O_2). Hence, the conversion of α -terpinene is the sum of the 3O_2 produced from H₂O₂ and ³O₂ consumed from the head space. This correlation indicates that α -terpinene is reacting with 3O_2 rather than any ¹O₂ that would be formed during H₂O₂ decomposition. Indeed, analysis by ¹H-NMR and Raman spectroscopy confirms the formation of p-cymene as the primary product (Figures 4B, S5, and note Raman bands that appear at around 700 and 810 cm⁻¹ in Figure 5). This is consistent with α terpinene engaging in auto-oxidation (Figure S6), [22] initiated by radicals and either reacts with ³O₂ to form an aromatic product, p-cymene, or reacts with hydroperoxyl radicals (formed during formation of p-cymene), to yield allylic epoxides (see SI section 2 for further details).

Consideration of the disproportionation of H_2O_2 , at high concentrations, by 1, allows for rationalisation of why α -terpinene shows auto-oxidation with the $H_2O_2/1$ -system (Figure 2 pathway b). Several radical intermediates or radical sources appear in the proposed mechanism and although pathway (b) is unfavourable, radical abstraction by an hydroxyl radical or 4 can initiate radical auto-oxidation. Although, 1 is

ultimately responsible for initiating auto-oxidation (conversion is not observed in the absence of 1, Figure S7), the short lag period implies that the increase in the concentration of O_2 in solution plays a role also.

The generation of ${}^{1}O_{2}$ from $H_{2}O_{2}$ using MoO_{4}^{2-} as catalyst was studied extensively by Aubry et al.[23-28] Although the mechanism of the reaction is complex (e.g., concentration dependent equilibria involving several peroxomolybdate species dependent on [H₂O₂]), it has been used in large scale (batch) reactions, [28] as a heterogeneous catalyst by immobilization of the molybdate, [29] and in flow reactors. [30] Hence, as a positive control in the present study α -terpinene was reacted with ¹O₂ generated with MoO4²⁻. ^[31,32] Raman spectra recorded over time and ¹H-NMR spectra before and after the oxidation of $\alpha\text{-terpinene}$ in the presence of Li_2MoO_4 catalyst and H_2O_2 (Figures S8 and S9) show the expected ascaridole product. Hence, the susceptibility of chemical probes for ¹O₂ to other oxidation mechanisms that can be initiated during catalytic decomposition of H₂O₂ means that it cannot be concluded that ¹O₂ is not formed by decomposition of H₂O₂ by 1. Hence the direct observation of ¹O₂ by chemiluminescence was explored.

¹O₂ chemiluminescence with MoO₄²⁻

Regardless of whether ¹O₂ is generated by photosensitisation, using, e.g., Rose bengal, or by thermal decomposition of another compound, e.g., the disproportionation of H2O2 or thermal decomposition of an endoperoxide, ¹O₂ relaxes rapidly to 3O_2 either non-radiatively, or radiatively with emission in the NIR (1270 nm). Detection of the weak chemiluminescence of ¹O₂ is challenging due to the low photon flux. Hence, the decomposition of H_2O_2 to 1O_2 and water by the catalyst Li₂MoO₄, which proceeds with unit chemical efficiency, was used as a positive control. [23-27] The rate of H₂O₂ disproportionation by the catalysts was determined using simultaneous head space Raman spectroscopy (to determine ³O₂ released) and the NIR emission from the ¹O₂ produced. This combination of techniques allowed us to apply conditions where the rate of disproprotionation by 1 exceeds that of the Li₂MoO₄ / H₂O₂ system. As for the reaction of 1 with H₂O₂ (Figure 3), the reaction of Li₂MoO₄ with H₂O₂ was monitored by head space and solution Raman spectroscopy (Figure S10).

The mechanism of disproportionation of H_2O_2 by MoO_4^{2-} was investigated earlier by Aubry et al., [26] and it is of note that the reaction kinetics are different to that observed with 1 (Figure S10). With excess H_2O_2 , 1 shows a relative constant rate of 3O_2 evolution between $0-2500\,\mathrm{s}$ (Figure 3), whereas MoO_4^{2-} shows a pronounced initial lag phase, followed by a steady rate of 3O_2 evolution for ca. $500\,\mathrm{s}$ and thereafter the evolution of 3O_2 continues at a much lower rate until it ceases at ca. $3500\,\mathrm{s}$ (Figure S10). The discontinuous time dependence of 3O_2 evolution is due to the different rates at which the various peroxomolybdate species disproportionate H_2O_2 : the oxotriperoxomolybdate ($[MoO(O_2)_3]^{2-}$) species disproportionates it 20 times faster than the dioxodiperoxomolybdate ($[MoO_2(O_2)_2]^{2-}$) and tetraperoxomolybdate ($[MoO_2(O_2)_2]^{2-}$). This is apparent when comparing the decay

added from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ccc. 202301594 by Universite/isbibliotheek, Wiley Online Library on [18/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Chemistry Europe European Chemical Societies Publishing

of H₂O₂ with the formation of ³O₂ (Figure S10): ³O₂ is liberated in the head space long after mostly all of the H2O2 has been consumed. Additionally, the stoichiometric balance of the H₂O₂:³O₂ is 2:1 for 1, but 3:2 for MoO₄²⁻ under the conditions used. It is of note that the concentration of MoO₄²⁻ gives a maximum of 6 turnovers of which 1 equivalent of H2O2 is used for the initial oxidation of the catalyst to the resting state. This contrasts with the much lower concentration of 1 used, which shows 400 turnovers, and the amount of H₂O₂ needed to generate the Fe(III) resting state is negligible.

The optical system was arranged such that the ³O₂ released into the head space of a sealed cuvette was quantified by Raman spectroscopy at 785 nm and the chemiluminescence from ¹O₂ emitted from the reaction mixture was collected by the NIR emission spectrometer concurrently. In this way, the rate of ³O₂ evolution from decomposition of H₂O₂ and the chemiluminescence from ¹O₂ over time could be correlated. The relation between chemiluminescence from ¹O₂ generated by the catalyst Li_2MoO_4 reacting with H_2O_2 with the evolution of $^3\text{O}_2$ into the headspace is readily apparent in Figure 7A,B, which shows chemiluminescence from 1O_2 and 3O_2 evolution, respectively. Hence, despite that the concentration of OH oscillators (i.e. water, which quenches ¹O₂ efficiently) introduced with the H₂O₂ is significant, the NIR emission spectrometer is capable of detecting the emission from the ${}^{1}O_{2}$ produced as it relaxes to ${}^{3}O_{2}$.

Comparison of a plot of number of moles of ³O₂ gas released into the headspace and intensity of NIR emission from radiative relaxation of ¹O₂ over time (Figure 7C) with the cumulative emission intensity over time shows a near perfect overlap with the release of ³O₂ into the headspace. This correlation is expected since the chemiluminescence from ¹O₂ indirectly relates to the overall rate of formation of ³O₂. There is, however, an offset between 1000-2000 s, which is ascribed to a lag time between the formation of ³O₂ in solution (i.e., considering its solubility and lack of convection) and its appearance in the head space of the cuvette at the point at which the Raman probe is focused. Importantly, Figure 7D shows the same reaction progresses at the final reaction stage in which a trend line between 4200-5000 s is determined from the ³O₂ curve. The rate of release of ³O₂ is 9.2 nmol/s in this period (note that Li₂MoO₄ produces ¹O₂ from H₂O₂ quantitatively^[24]), and shows that the limit of detection of ¹O₂ chemiluminescence with the present optical system is sufficient to detect emission at such low photon fluxes. The rate of release of ³O₂ therefore serves as the lower limit of ¹O₂ chemiluminescence detection in the H₂O₂ disproportionation by 1.

¹O₂ chemiluminescence with H₂O₂ and 1

The ¹O₂ chemiluminescence and the evolution of ³O₂ from the 1/ H₂O₂ system are shown in Figure 8A. Figure 8B shows the evolution of ³O₂ and luminescence intensity over time. In contrast to Li₂MoO₄, with 1 emission from ¹O₂ is not observed during the disproportionation of H₂O₂. The initial rate of ³O₂ formation (between 250–750 s) (Figure 8B) corresponds to 158 nmol/s, which is well above the limit of detection of the system (9.2 nmol/s) and indicates that no more than 6% of ³O₂ that is liberated through H₂O₂ disproportionation by

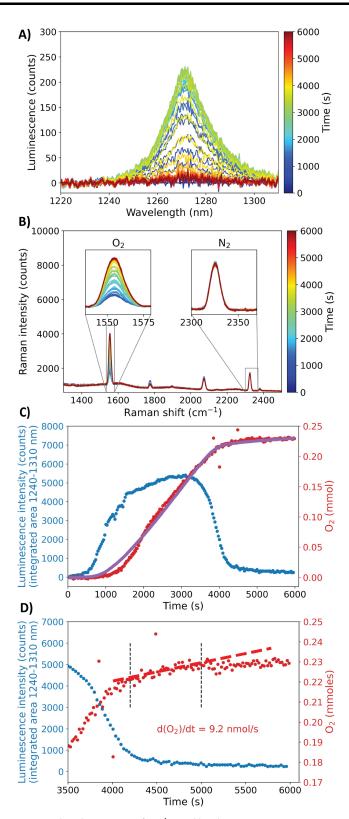
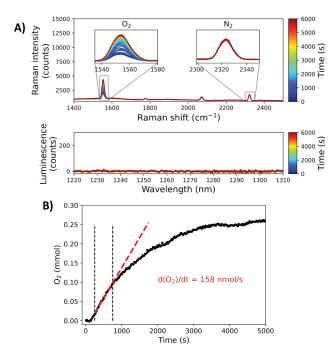
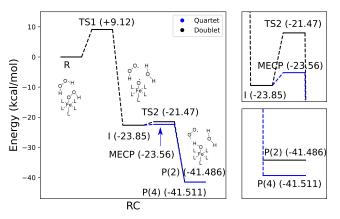



Figure 7. Chemiluminescence from ¹O₂ and head space Raman spectroscopy during the reaction of Li₂MoO₄ with H₂O₂. A) NIR emission and B) head space Raman spectra ($\lambda_{\rm exc}$ 785 nm) over time. C) Integrated intensity of emission at 1270 nm (blue), cumulative middle Riemann sum of the ¹O₂ chemiluminescence (purple) and number of moles of ³O₂ released into the head space (red) over time. D) Expansion of between 3500-6000 s from C. Conditions: 43 mM Li_2MoO_4 , 263 mM H_2O_2 in CD₃OD at 19 °C.

wild oaded from https://chemistry-europe.onlineilbrary.wiley.com/doi/10.1002/ccc.202301594 by Universiteitsibiliotheek, Wiley Online Library on [18/03/2024]. See the Terms and Conditions (https://onlineilbrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Figure 8. NIR emission spectra and head space Raman spectroscopy during the reaction of 1 with $\rm H_2O_2$. A) NIR emission spectra and head space Raman spectroscopy ($\lambda_{\rm exc}$ 785 nm) over time. B) Number of moles of ${}^3\rm O_2$ released into the head space over time. Conditions: 0.5 mM 1, 275 mM $\rm H_2O_2$ in CD₃OD at 19 °C.


1 may be released initially as 1O_2 . Hence, the levels of 1O_2 corroborate conclusions reached from earlier DFT calculations (vide infra), $^{[14]}$ that only 3O_2 is formed in the reaction with 1. However, an important factor to consider is that the iron complexes themselves can potentially act as a quencher for 1O_2 .

${}^{1}O_{2}$ photoluminescence with $[Ru(bipy)_{3}]^{2+}$

As a control, the ${}^{1}O_{2}$ photosensitizer $[Ru(bipy)_{3}]^{2+}$ was used in the presence of 1 (excitation at 450 nm) in methanol to determine how significant the quenching by 1 of ${}^{1}O_{2}$ luminescence is (Figures S11 and S12). Addition of 1 to $[Ru(bipy)_{3}]^{2+}$ in methanol decreases the intensity of ${}^{1}O_{2}$ luminescence due to dilution and the primary inner filter effect (1 and 2 absorb at 450 nm). Similarly, ${}^{1}O_{2}$ luminescence decreased upon addition of a few equivalents of $H_{2}O_{2}$ due to the addition of extra OH oscillators. However, when excess $H_{2}O_{2}$ (400 equiv.) was added, an initial increase in emission intensity was observed due to saturation of the methanol with O_{2} and thereafter the emission intensity remained constant for the remainder of the reaction, confirming that 3 does not quench ${}^{1}O_{2}$.

Density Functional Theory and microscopic mechanism

The reaction coordinate diagram for the reaction of **3** with H_2O_2 and energies for all products and transition states is shown in Figure 9. The first step involves concomitant homolytic cleavage of the O–O bond with hydrogen atom transfer (HAT) from H_2O_2

Figure 9. Reaction coordinate diagram for the reaction of **3** with H_2O_2 . Relative energies compared to the reactant are given in brackets. The product energy is slightly lower for the quartet product.

to the nascent hydroxyl radical to form H_2O and HOO^{\bullet} . The lower initial reaction barrier and high driving force makes this mechanism overall plausible. However, in the study by Chen et al.^[14] only the reaction pathway in black (in the doublet state) was considered. Inclusion of the quartet state gives a mechanism, which results in a slightly lower final energy. The two pathways considered here are (i) an adiabatic pathway to form triplet oxygen, via TS2 and (ii) a non-adiabatic pathway via an MECP (minimal energy cross point) between the doublet and quartet states. At the MECP the total spin increases from $S=\frac{1}{2}$ to $S=\frac{3}{2}$, i.e., with an unpaired electron at the Fe-OH center that is coupled to two unpaired electrons on the O_2 molecule (Figure S13).

MECP versus TS2 and nature of products

A Minimal Energy Crossing Point (MECP)^[33] provides a route for spin forbidden reactions to occur. They are defined as geometric points where two (or more) spin states have equal energy. The energy gap between the intermediate and the MECP, between the doublet and quartet states, is low (0.29 kcal/mol) and hence is expected to be a faster route than the non-adiabatic route. Additionally, the quartet is lower energy than the doublet product. This low MECP barrier can be understood easily as resulting from the spin-flip from β to α on the iron-oxygen moiety. The energy of the final product is significantly decreased due to the use of broken-symmetry DFT which produces a solution where the oxygen and low spin iron's electrons are ferromagnetically coupled to each other (Figure S13).

Simulation and fitting of kinetic data

The mechanism proposed earlier for the reactions of 1 with H_2O_2 (Figure 2) was simulated using known rate constants for the individual reactions.^[14] The rate constants for the elementary steps involved in the catalytic disproportionation were

aded from https://chemisty-george onlinelibrary.wiley.com/oi/01/01/02/ctc.202301594 by Universite its bibliotheek, Wiley Online Library on [18/3/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

complemented with k_{-1} , the reverse of k_1 (Figure 10). k_{-1} was obtained by fitting of the concentration of **3** between 0–100 s with various initial equivalents of H_2O_2 (Figure 11). The best fit for k_{-1} (between 0.000 s⁻¹ and 0.045 s⁻¹) is much lower than k_1 , indicating that the equilibrium lies heavily towards **3**.

The concentrations of various iron species, ³O₂, and H₂O₂ was modelled using a microkinetic model (Figure 10), using the differential equations for the rate of change of the reaction components (iron species, ³O₂, and H₂O₂, etc.) as input with known rate constants (Figures S14-16). The modelled reaction progress, in terms of changes in 3O_2 and H_2O_2 concentrations and partial pressures for 400 equiv. H₂O₂, is compared to experimental data (Figure 12 (Top), see Figure S17 for spectral data). The modelled concentration of H₂O₂ matches well with the experimental data; however, the modelled concentrations of ³O₂ deviate from the experimental data in that ³O₂ is formed more rapidly than predicted. An explanation is that the second order rate constant for H₂O₂ disproportionation was determined from the observed rate of H₂O₂ decomposition, rather than ³O₂ formation.^[14] The higher than predicted rate of 3O_2 formation hints that the "true" rate of H_2O_2 disproportionation may be somewhat greater than 0.8 M⁻¹ s⁻¹.

The modelled concentration of $\bf 3$ over time with 400 equiv. H_2O_2 (Figure 12 (Bottom)) shows good agreement with exper-

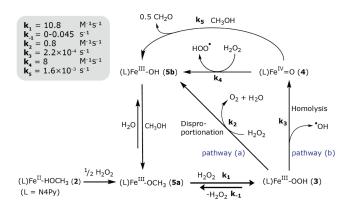


Figure 10. Proposed mechanism of 1 with excess H_2O_2 in methanol including k_{-1} and k_5 . k_5 is the pseudo-first-order rate constant for the reaction of 4 with methanol.

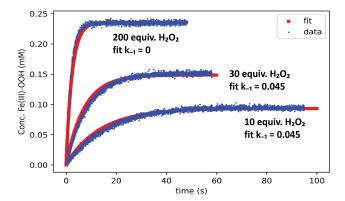
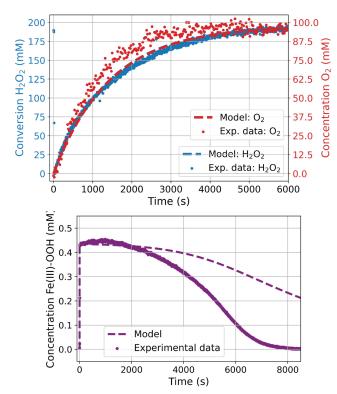



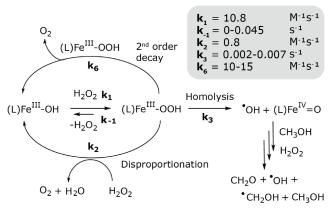
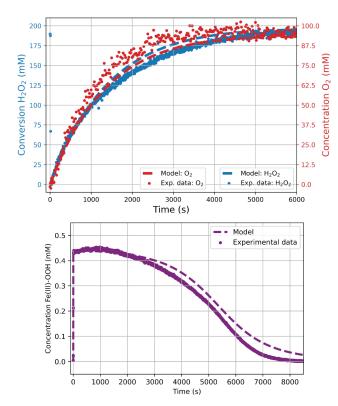
Figure 11. Fitting of k_{-1} from change in concentration of 3 over time after addition of H_2O_2 . Conditions: 0.25 mM 1 and various initial concentrations of H_2O_2 (10 equiv., 30 equiv., and 200 equiv. w.r.t. 1).

Figure 12. Experimentally determined reaction progress with the simulated progress based on model shown in Figure 10 for an initial 400 equiv. H_2O_2 . Top: 3O_2 (red) and H_2O_2 (blue) reaction progress determined by Raman spectroscopy. Bottom: concentration of **3** over time from visible absorption spectroscopy. Conditions: 0.46 mM **1** and 190 mM H_2O_2 in methanol. Visible absorbance, head space and liquid phase Raman spectra were recorded concurrently. See Figure S17 for spectral data and further details regarding the model used.

imental data for the first 3000 s. Thereafter the prediction and experimental data deviate strongly, indicating that an additional decay reaction for $\bf 3$, not considered in the mechanism, is important when essentially all of the H_2O_2 has undergone disproportionation. We surmised that $\bf 3$ may react with itself in a second order process.

H₂O₂ disproportionation was examined with different initial concentrations of 1 (5 mM, 1 mM, 50 μ M, Figure S18–19) to explore this hypothesis. UV/vis absorption spectroscopy shows that the decay of 3 is much faster with 5 mM 1 than with 50 μ M 1, consistent with bimolecular reactivity. In Figure 13 the extra elementary step is added to the mechanism with second order rate constant k_6 , estimated to be between 10 and 15 M^{-1} s⁻¹. Furthermore, the first order rate constant k₃ was determined to be greater (between 0.002 and 0.007 s⁻¹) from experiments carried out with 50 μ M 1. Here the second order process (k_6) is of less importance, and thus the first order process (k₃) may be estimated as it determines the decomposition of 3 primarily. Figure 14 shows the predicted concentrations of 3, H₂O₂, and ³O₂ taking into consideration the extra elementary step (k₆) and the adjusted value of k₃. The modified model indicates that the prediction for H₂O₂ and ³O₂ remains accurate, and here the modelled decay of 3 approximates the experimental data better also. The estimated rate constants k_3 and k_6 are relevant for

added from https://chemisty-guerope.onlinelibrary.viley.com/doi/10.1002/ctct.202301594 by Universite its bibliotheek, Wiley Online Library on [18/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

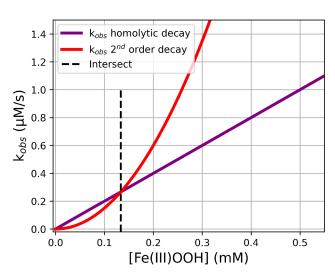

Figure 13. Proposed mechanism focused on the reactivity of the 3, with the additional elementary step of the second order decay of 3 (k_c).

Figure 14. Reaction progress expected on basis of modified mechanism shown in Figure 13 for the conversion of 400 equiv. H_2O_2 compared with experimental data. Top: Concentration of 3O_2 (red) and H_2O_2 (blue) over time. Bottom: Concentration of 3 over time. Visible absorbance, and head space and liquid phase Raman spectroscopy were recorded concurrently. Conditions: 0.46 mM 1 and 190 mM H_2O_2 in methanol. See supporting information for details of model.

understanding the formation of OH radicals (through O–O bond cleavage in 3). Figure 15 shows the relation between k_{obs} vs [3] for the homolytic decay (k_3) and the 2^{nd} order decay (k_6) processes, respectively.

The concentration dependence of the two decay processes show a salient point at ca. 0.13 mM 3 where the dominant decay pathway switches, which is consistent with data shown in Figure 14 (bottom). From Figure 15 it is apparent that formation of hydroxyl radicals and 4 proceeds at a rate of ca. 1 μ M/s with

Figure 15. Relation between the observed rate, k_{obs} , and the individual decay processes for **3**; the homolytic decay, k_3 (estimated 0.002 s⁻¹), and the 2^{nd} order decay, k_6 (estimated 15 M⁻¹ s⁻¹).

[3] = 0.5 mM, which is possibly responsible for initiating autooxidative reactions. In methanol alone, both hydroxyl radicals and the 4 oxidise methanol to formaldehyde. From Figure 15 the amount of formaldehyde formed can be identified by determining the area under the homolytic decay pathway (purple line) between the initial concentration of 3 (ca. 0.45 mM) and its final concentration (zero). However, the 0.125 mM formaldehyde that would be formed in this case (multiplying [3] = 0.5 mM and k_{obs} = 1 μ M/s and dividing by 2), results in >0.1% efficiency of formaldehyde formation w.r.t. $\rm H_2O_2$ added (200 mM), whereas an efficiency of 2% was determined earlier for similar conditions of [H₂O₂] (800 eq).^[14] This discrepancy may be rationalised if the assumption that OH radicals react with methanol stoichiometrically is false; indeed it is known that OH radicals induce chain reactions of methanolto-formaldehyde oxidation in the presence of H₂O₂. [34,35] These radical processes were not included in the catalytic model, and are indeed difficult to model, but can be assumed to be responsible for a part of the H₂O₂ decay (HAT from H₂O₂ by hydroxyl radical to form water and superoxide) and the formation of formaldehyde also.

Discussion

The disproportionation of H_2O_2 catalysed by 1 was investigated earlier by Chen et al.,^[14] from which it was confirmed by reaction monitoring that the species responsible for H_2O_2 oxidation was 3. Initial DFT studies confirmed the energetic soundness of this conclusion, including the prediction of an intermediate formation of a hydrogen bonded superoxide radical, and predicted that the reaction would lead to the generation of 3O_2 , but only the low-spin state was considered. In the present study the formation of 1O_2 was investigated using both chemical probes and by chemiluminescence. Near infrared emission spectroscopy, with the well-established singlet oxygen

generator $[MoO_4^{2-}]$ was used as a positive control and, by ensuring the rates of disproportionation of H_2O_2 were similar under the experimental conditions employed, it was confirmed that 1 does not produce 1O_2 corroborating the predictions made by DFT calculations.

Revisiting the mechanism by DFT methods considering broken symmetry calculations and possible MECPs, we found here that the two step process involving a transient protonated superoxide intermediate was followed by a very low barrier for the subsequent step to form oxygen. The low barrier is consistent with the absence of reactivity of the transiently formed 4 (Fe(IV)O) H-bonded to the protonated superoxide, as they react immediately by a second HAT. It is of note that should the protonated superoxide escape 4, it will react rapidly with methanol and this side reaction may account for some of the methanol oxidation observed. The present DFT studies also considered a minimum energy crossing point (MECP) between the doublet and quartet surfaces, which provides a second channel by which only 3O_2 is formed.

Although O-O bond homolysis in 3 is frequently proposed in mechanistic cycles, experiments at low concentrations of 1 confirmed that the rate constant for this reaction estimated earlier,[14] is indeed much lower than the reaction between two molecules of 3. Hence, the release of protonated superoxide is possibly more important as a source of oxidant for methanol oxidation, in addition to the OH radical induce chain reactions.[34,35] Thus, there is a second pathway to methanol oxidation besides pathway b (Figure 10), i.e., via 4 and an hydroxyl radical. An unexpected observation made in efforts to establish the generation of ¹O₂ using chemical probes was that under such conditions ³O₂ was consumed from, rather than released, into the headspace during disproportionation. While it would be expected that the trapping of ¹O₂ would reduce the amount of oxygen released into the headspace, it should not lead to a consumption of ³O₂. Product analysis confirmed that the oxygen consumption was due to auto-oxidation solely. These data indicate that sufficient free radicals are generated during disproportionation, which combined with the saturation of the solution with ³O₂, creates an ideal condition for autooxidation. This observation prompted us to consider the origin of these radicals, e.g., do they arise from O-O bond homolysis in 3.

Using the available data, we constructed a microkinetic model based on the mechanism shown in Figure 2 to establish the significance of pathway b (O–O bond homolysis) overall and thereby the origin of oxidation products of methanol. The rate constants for the reaction of 3 with H_2O_2 and with itself are order of magnitudes larger compared to O–O bond homolysis in 3. This implies that 4 does not form in significant amounts at high $[H_2O_2]$, and hence it is only available as the $[H_2O_2]$ becomes negligible. This together with the knowledge that 4 reacts rapidly with (protonated) superoxide and H_2O_2 rapidly raises the question whether 4 plays any role in the oxidation of organic substrates under these conditions.

In probing the reaction for ${}^{1}O_{2}$ formation using Raman spectroscopy, it became clear that $H_{2}O_{2}$ decomposition generates sufficient free radicals to trigger autooxidation. This shows

the importance of keeping a low $[H_2O_2]$ not only to limit disproportionation but also to prevent build up of O_2 and hence radical initated autooxidation. The 1-catalysed disproportionation of excess H_2O_2 is a wasteful reaction in regard to efficiency of organic oxidation reactions but further than that, the generation of reactive oxygen species needs to be considered also. Protonated superoxide and hydroxy radicals are likely to be primarily responsible for reactions with organic substrates here.

Conclusions

While formation of ¹O₂ by H₂O₂ disproportionation can be excluded both empirically and by DFT studies, the significance of radical pathways was established, which are promoted by the presence of the oxygen formed. These radical pathways are concluded to be of greater importance than direct oxidation of organic substrates by 4 ($[(N_4Py)Fe(IV) = O]^{2+}$). Although the present investigation has focused on reactions in methanol, the solvent plays only a modest role in the disproportionation reactions, e.g., in regard to H-bonding etc., and as a substrate for reactive oxygen species. Hence, the observation that 4 is unlikely to be formed from 3 ((N₄Py)Fe(III)OOH]²⁺) raises questions in regard to the benefit of using low steady state concentrations of H₂O₂ to circumvent wasteful disproportionation, except perhaps where the substrate can interact with complexes equivalent to 3 as shown by Nam and coworkers with the complex $[Fe(II)(12-TMC)(CH_3CN)_2]^{2+}.^{\tiny [10]}$

Experimental

Materials

Solvents, H_2O_2 (50 vol%), and reagents were obtained from commercial sources and used as received (H_2O_2 from Sigma Aldrich). Solvents for spectroscopic studies were spectrophotometric grade. [(N_4Py)Fe(II)(CH_3CN)](CIO_4)₂ (1) was available from earlier studies. [14]

Physical methods

NMR spectra were recorded on a Bruker 400 MHz spectrometer. UV/ vis absorption spectra were recorded on a Specord600 (AnalytikJena) or Specord210plus spectrometer in 1 cm pathlength quartz cuvettes unless stated otherwise. Raman spectra at 785 nm were recorded with excitation by an ONDAX Mini-Benchtop Stabilized Laser at 785 (500 mW at source) or a Cobolt 08-NLDM (500 mW at source) coupled with a 100 micron multimode optical fibre to a Raman probe (Avantes). The Raman scattering was collected by the probe and passed by a round to line bundel optical fibre to the Shamrock163i spectrograph with a 600 l/mm 830 nm blazed grating and a idus-420-BEX2-DD CCD camera (Andor Technology). Raman spectra at 1064 nm were recorded with a 500 mW fibre coupled 1064 nm CW laser (Cobolt lasers) terminated with a collimation lens and directed into the optical path of the spectrometer with a 45° long pass dichroic beamsplitter and focused onto the sample with a 35 mm focal length 25 mm diameter lens. Raman scattering was collected by the same lens and pass through the dichroic beamsplitter and a long pass filter (1064 nm, Semrock) to reject Rayleigh scattering and focused with a 35 mm focal length planoconvex lens into a Shamrock 193i spectrograph equipped with a idus-InGaAs diode array (Andor Technology) with a 860 nm blazed 300 l/mm grating. Raman spectra at 532 nm were recorded using a 300 mW laser (Samba, Cobolt lasers) in 180 ° backscattering geometry. A 45° long pass dichroic mirror directed the laser into the optical axis of the spectrometer. The laser was focused and Raman scatttering collected with a 7.5 cm planconvex lens. The collimated Raman scattering pass through the dichroic and a long pass filter before being focused by a 7.5 cm planconvex lens into a Shamrock300i spectrograph equipped with a 1200 l/mm grating blazed at 500 nm and a Newton EMCCD-DU970 camera (Andor Technology). The slit width was set to 50 μm . Spectra were acquired with Andor Solis with spectral calibration with cyclohexane (ASTM E 1840). Spectra were typically 0.1 to 1 s acquisitions and 10 accumulations.

Density Functional Theory

The S12 g functional together with the TZ2P basis set in ADF/QUILD/AMS 2022 was used for all optimizations, frequency calculations and MECP optimizations. Broken symmetry DFT was used for quartet states, where the spin was flipped between the iron center and the molecular oxygen.

Oxygen quantification by head space operando Raman spectroscopy

Quantification of 3O2 in the head space of a closed cuvette by Raman spectroscopy requires consideration of the optical arrangement of the spectrometer system used and in particular the overlap of the confocal volume (volume of space from which Raman scattering is collected by the Raman probe optics), with the internal volume of the cuvette, as the confocal depth can exceed the depth of the cuvette. This overlap was determined by recording Raman spectra from the headspace of a cuvette before and after purging with argon (see SI for details, Figure S2). Considering a sealed cuvette (5.07 mL volume), in which 1.5 mL is liquid phase consisting of methanol (1.5 mL, solvent), H_2O_2 (17 μ L, 200 mM, 50 wt% (agueous)), 1 (0.5 mM, by addition of 0.375 mL of a 2 mM solution of the complex in MeOH) at 19°C. The final volume of the headspace above the reaction mixture was 3.57 mL. Although disproportionation takes place in the liquid phase, the maximum solubility of ³O₂ in methanol is exceeded rapidly (see SI) and it is released essentially quantitatively into the headspace. The compositions of the reaction mixture and the headspace were monitored by Raman spectroscopy simultaneously with two probes. One Raman probe (λ_{785}) was focused at the head space to monitor the change in Raman scattering intensity from 3O_2 (1555 cm $^{-1}$) and N_2 (2329 cm $^{-1}$). A second Raman probe (λ_{785}) was focused at the liquid phase to monitor conversion of H₂O₂ through the decay in the intensity of O–O stretch band of the H₂O₂ (872 cm⁻¹). The oxygen liberated during the reaction was calculated from the Raman data obtained.

In our earlier report on the disproportionation of H_2O_2 by 1 in methanol, $^{[14]}$ we noted an incomplete mass balance with 28% of the H_2O_2 accounted for by disproportionation to H_2O and 3O_2 and only 2% of H_2O_2 used in the oxidation of methanol to formaldehyde (*i. e.*the oxidation product of the reaction of methanol with, *e. g.,* 4 and/or hydroxyl radicals). Hence, ca. 70% of the H_2O_2 was unaccounted for. We revisited the experiment here and determined that the incomplete mass balance was due to an error in the method of calculation used earlier together with unaccounted for contributions from Raman scattering from air in the the

part of the confocal volume outside of the cuvette (see SI for details). Reanalysis of earlier data, and repeat of those experiments here, confirms that the mass balanced was 99% + /-3% with regard to H_2O_2 and hence greater >95% is disproportionated to H_2O and 3O_2 as was concluded earlier. The formula (Equation 1) to quantify the 3O_2 liberated from the reaction mixture into the headspace of the closed cuvette and the method used to calculate the concentration of 3O_2 inside the head space and solution is discussed in detail in Section 1 in the supporting information).

Number of moles of liberated $O_2 = n_{O_2} =$

(Raman Integral Ratio
$$-1$$
) \times

$$(p_{O_2,i}[P_a] \times V_H[m^3] \times \frac{1}{RT_i} \left[\frac{mol}{P_a \times m^3} \right] + C_{O_2,i} \left[\frac{m^3}{m^3} \right] \times V_L[m^3] \times \frac{1}{V_{m,O_2}} \left[\frac{mol}{m^3} \right])$$
(1)

Where $p_{O_2,i}$, initial partial pressure of 3O_2 , V_H , volume of the head space of the cuvette, R, gas constant, T, temperature, $C_{O_2,i}$, initial solubility of 3O_2 in methanol, V_L , volume of the liquid inside the cuvette, and V_{m,O_2} , the molar volume of 3O_2 .

The area underneath the $\nu_{OO\ str}$ band of 3O_2 , after purging the cuvette with argon, was subtracted from the area with air, both normalised to the Raman band of N_2 . The ratio between these corrected areas was used as the starting point for the quantification (Equation 1). It should be noted that the contribution of 3O_2 outside the cuvette to the Raman scattering collected is that the intensity of the Raman band will always be above the limit of detection/quantification. The area of a Raman band is linearly proportional to the partial pressure and therefore the increase in the number of moles of 3O_2 in the head space (Equation 1). The overall increase in gas pressure increases the solubility of 3O_2 in the methanol, which can be calculated using Henry's law. Hence, the increase the overall amount of 3O_2 inside the cuvette is the sum of the increase in 3O_2 in the head space and the increase of dissolved 3O_2 in the methanol (Equation 1).

¹O₂ trapping experiments

Reaction with 1 at 22% conversion of α -terpinene

An empty cuvette was purged with argon and a spectrum recorded at 532 nm to determine Raman scattering intensity originating from inside and outside of the cuvette. Then, the cuvette was airequilibrated and 0.122 mL $\alpha\text{-terpinene}$ (0.75 mmol, 0.5 M) and 14 μL 50% H₂O₂ (aq.) (0.25 mmol, 166 mM H₂O₂) were added to 1.26 mL of methanol. 0.5 mM 1 (by addition of 0.100 mL of a solution of 2.6 mg 1 in 0.5 mL methanol) was added to the cuvette to initiate the reaction and Raman spectra were recorded over 3700 s (at 532 nm head space: a series of 185 spectra with 2 s acquisition and 10 accumulations per spectrum; at 1064 nm liquid phase: a series of 250 spectra with 5 s acquisition and 4 accumulations per spectrum).

Reaction with 1 at 50% conversion of α -terpinene

A solution of 1.26 mL methanol, 0.122 mL α -terpinene (0.75 mmol, 0.5 M) and 42.6 μ L 50% H₂O₂ (aq.) (0.75 mmol, 0.5 M H₂O₂) was prepared. The ¹H-NMR spectrum of a sample was recorded. 0.5 mM 1 (added as 0.1 mL of a stock solution of 2.6 mg 1 in 0.5 mL methanol) was added to the cuvette to initiate the reaction and Raman spectra were recorded over 7200s (at 785 nm for the liquid

phase: a series of 360 spectra with 1 s acquisition time and 20 accumulations per spectrum). A sample was withdrawn for $^1\text{H-NMR}$ spectral analysis.

Reaction with α -terpinene with H_2O_2 and Li_2MoO_4

A solution of 1.21 mL methanol, 0.122 mL α -terpinene (0.75 mmol, 0.5 M) and 26 mg (0.15 mmol, 0.1 M) Li $_2$ MoO $_4$ was prepared. A sample for 1 H-NMR spectroscopy was recorded. 170 μ L 50% H $_2$ O $_2$ (aq.) (3 mmol, 2 M H $_2$ O $_2$) was added in portions to the cuvette (3 portions, 56.7 μ L each; after 0 h, 1 h and 1.5 h). Raman spectra were recorded over 7200 s (at 785 nm for the liquid phase: a series of 360 spectra with 1 s acquisition time and 20 accumulations per spectrum). A sample was withdrawn for 1 H-NMR spectral analysis.

NIR emission spectroscopy

 $^1\text{O}_2$ emission spectra were recorded using a spectrometer optimized for Raman spectroscopy at λ_{exc} 1064 nm (see experimental section "physical methods" for details). The spectrograph slit width was 10 μ m for Raman spectroscopy and 25 μ m for emission spectroscopy. The collection path was optimized using Raman scatter from cyclohexane, and spectra were calibrated using cyclohexane (ASTM E 1840). Reference spectra for $^1\text{O}_2$ emission were recorded using [Ru(bipy)₃] $^{2+}$ with excitation at 450 nm (35 mW) directed to follow the collection path using a dichroic mirror (DMPL900, Thorlabs).

A Raman probe (λ_{785}) focused on the head space of the cuvette equipped with a screw cap and septum holding the reaction mixture. Experiments with 1 were conducted with 1 (0.5 mM, added as 0.5 mL of a 1.5 mM 1 solution in CD₃OD) with an additional 1 mL CD₃OD. H₂O₂ (275 mM, 23 μ L 50 wt% H₂O₂ in H₂O added) was added through the septum of the cuvette by syringe to initiate the reaction. For experiments with MOO₄²⁻¹, Li₂MoO₄ (43 mM, 16.5 mg) was added to 1.59 mL CD₃OD, followed by H₂O₂ (263 mM, 23 μ L 50 wt% H₂O₃ in H₂O added by syringe) to initiate the reaction.

A control experiment to determine potential interference of 1 and its oxidation products with the luminescence of ¹O₂ emission was carried out using the oxygen sensitiser $[Ru(bipy)_3]^{2+}$ with excitation at 450 nm (35 mW). A solution of 30 μ M [Ru(bipy)₃]²⁺ in methanol was prepared (A = 1.73 at λ_{max} = 285 nm) from which 1.05 mL was added to a cuvette. 0.15 mL of a 5 mM 1 solution in methanol was added to the cuvette to obtain 0.65 mM 1 and 27 μ M [Ru(bipy)₃]²⁺ in 1.2 mL methanol and a luminescence spectrum was recorded. Ca. 3 equiv. H_2O_2 w.r.t. 1 (2.2 mM H_2O_2 , added as 3 μL of a 883 mM H₂O₂ solution in methanol) was added to the solution to convert to a and another luminescence spectrum was recorded. Consequently, $\rm H_2O_2$ (177 mM, added as 0.3 mL of a 883 mM $\rm H_2O_2$ solution in methanol) was added to the solution and the emission spectrum was monitored over 2 h. The final concentrations were 21 μM $[Ru(bipy)_3]^{2+}$, 0.5 mM 1, and 177 mM H_2O_2 in 1.5 mL methanol. Head space Raman spectra (λ_{785}) were recorded before and after addition of excess (177 mM) H₂O₂.

Computational studies

Computational studies were performed using ADF^[36] and QUILD,35^[37,38] as reported earlier.^[14] Briefly, geometry optimization and frequency calculations were performed using the unrestricted density functional S12 g spin-state consistent functional^[39,40] with a triple- ζ valence plus double polarization (TZ2P) basis set. Free energy (Δ G) corrections, thermal and entropic corrections were made from frequency calculations at 298 K. The solvation energy was considered using methanol as a solvent with the COSMO solvation model as implemented in ADF.^[41] A VeryGood grid was

used for all calculations, except for the frequency calculations which were run with a Normal grid. Scalar relativistic corrections have been included self-consistently in all calculations by using the zeroth-order regular approximation (ZORA). [42] All DFT calculations were performed using the unrestricted Kohn-Sham scheme.

Numerical simulation of the catalytic decomposition of H₂O₂

Numerical simulation was performed in Python using the "odeint" module from the "scipy.integrate" package. The set of elementary reaction steps with corresponding differential equations of the species involved, as well as the python script, are reported as supporting information. The 3, H_2O_2 , and 3O_2 were quantified from experimental data as follows: [3] was estimated from the absorbance at 550 nm (ε =1100 M $^-$ cm $^-$ 1), H_2O_2 from Raman spectra using a calibration curve (Figure S18), and 3O_2 via the quantification method described earlier.

Reactions with 1 (0.25 mM)

A solution of 0.25 mM 1 in 2 mL methanol (added as 1 mL of a 0.5 mM 1 solution in methanol) was added to a cuvette. While recording UV/visible absorption (Specord600), 10 equiv. H₂O₂ (added as 28 μ L 176 mM H₂O₂), 30 equiv. H₂O₂ (added as 8.5 μ L 1.8 M H₂O₂), or 200 equiv. H₂O₂ (added as 57 μ L 1.8 M H₂O₂) was added.

Reaction with 1 (0.5 mM) concurrently monitored by Raman (head space and liquid phase) and UV/vis absorption spectroscopy

A solution of 0.5 mM 1 in 1.1 mL methanol (added as 0.3 mL of a 5 mM 1 solution in methanol) was added to a 1 cm path length cuvette with screw-cap and septum. While recording UV/visible absorption (home setup, using an Avantes spectrometer and lightsource), and headspace and liquid phase Raman spectra at 785 nm, $\rm H_2O_2$ (194 mM, added as 0.4 mL of a 710 mM $\rm H_2O_2$ solution in methanol) was added through the septum to the cuvette. The reaction was monitored over 2 h. Head space Raman scattering were corrected for air in the part of the confocal volume outside of the cuvette as described before.

Similarly, reactions were performed with different amounts of H_2O_2 : for 100, 50, 20, and 5 equiv. H_2O_2 , respectively 0.1 mL, 50 μ L, 20 μ L, and 5 μ L of a 710 mM H_2O_2 solution in methanol was added to a solution containing 0.5 mM 1 (added as 0.3 mL of a 5 mM 1 solution in methanol), where different amounts of methanol were added to result in a 1.5 mL total volume.

Reaction with 1 (50 μ M)

A solution of 50 μ M 1 in 19.6 mL methanol (added as 0.2 mL of a 5 mM 1 solution in methanol) was added to a 10 cm path length cuvette. While measuring UV/visible absorption, H₂O₂ (18 mM, added as 0.4 mL of a 883 mM H₂O₂ solution in methanol) was added as evenly as possible over the length of the 10 cm path length cuvette and the solution was mixed by pipetting in and out the solution. The UV/vis absorption spectra were recorded over 3 h.

Reaction with 1 (1 mM)

A solution of 1 mM 1 in 0.9 mL methanol (added as 0.3 mL of a 5 mM 1 solution in methanol) was added to a 1 cm path length cuvette. While measuring UV/vis absorption, $\rm H_2O_2$ (350 mM, added

Chemistry Europe European Chemical Societies Publishing

as 0.6 mL of a 883 mM H_2O_2 solution in methanol) was added as evenly as possible over the length of the 10 cm path length cuvette and the solution was mixed by pipetting in and out the solution. The UV/vis absorption spectra were recorded over 2 h.

Reaction with 1 (5 mM)

A solution of 5 mM 1 in 0.5 mL methanol was added to a 2 mm path length cuvette. While measuring UV/vis absorption spectra, $\rm H_2O_2$ (90 mM, added as 0.057 mL 50 wt% $\rm H_2O_2$ (aq.)) was to the 2 mm path length cuvette and the solution was mixed by pipetting in and out the solution. The UV/vis absorption spectra were recorded over 2 h.

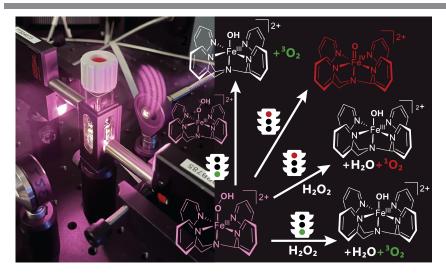
Acknowledgements

This work is part of the Advanced Research Center for Chemical Building Blocks, ARC CBBC, which is co-founded and cofinanced by the Dutch Research Council (NWO) and the Netherlands Ministry of Economic Affairs and Climate Policy (ARC-CBBC, 2021.038C.RUG.8). AEI/MCIN, Grant: PID2020-114548GB-I00; GenCat, Grant: 2021SGR00487; SCM: developer's license to M.S.

Conflict of Interests

The authors have no conflicts of interest to declare.

Data Availability Statement


The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: iron · singlet oxygen · hydrogen peroxide · catalase · mechanism

- [1] F. Lledias, W. Hansberg, Photochem. Photobiol. 1999, 70, 887.
- [2] J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo, B. J. Evans, J. Am. Chem. Soc. 1981, 103, 2884.
- [3] P. Jones, H. B. Dunford, J. Inorg. Biochem. 2005, 99, 2292.
- [4] M. Lubben, A. Meetsma, E. C. Wilkinson, B. L. Feringa, L. Que, Angew. Chem. IE 1995, 34, 1512.
- [5] G. Roelfes, M. Lubben, K. Chen, R. Y. N. Ho, A. Meetsma, S. Genseberger, R. M. Hermant, R. Hage, S. K. Mandal, V. G. Young, Y. Zang, H. Kooijman, A. L. Spek, L. Que, B. L. Feringa, Inorg. Chem. 1999, 38, 1929.
- [6] D. Kumar, H. Hirao, L. Que, S. Shaik, J. Am. Chem. Soc. 2005, 127, 8026.
- [7] K.-B. Cho, X. Wu, Y.-M. Lee, Y. H. Kwon, S. Shaik, W. Nam, J. Am. Chem. Soc. 2012, 134, 20222.

- [8] M. Borrell, E. Andris, R. Navrátil, J. Roithová, M. Costas, Nat. Commun. 2019, page 901.
- S. Xu, A. Draksharapu, W. Rasheed, L. Que, J. Am. Chem. Soc. 2019, 141, 16093.
- [10] W. Zhu, A. Kumar, J. Xiong, M. J. Abernathy, X.-X. Li, M. S. Seo, Y.-M. Lee, R. Sarangi, Y. Guo, W. Nam, J. Am. Chem. Soc. 2023, 145, 4389.
- [11] W. N. Oloo, M. Szávuly, J. Kaizer, L. Que, Inorg. Chem. 2022, 61, 37.
- [12] J.-N. Rebilly, C. Herrero, K. Sénéchal-David, R. Guillot, T. Inceoglu, H. Maisonneuve, F. Banse, Chem. Sci. 2021, 12, 15691.
- [13] A. Bohn, C. Chinaux-Chaix, K. Cheaib, R. Guillot, C. Herrero, K. Sénéchal-David, J.-N. Rebilly, F. Banse, Dalton Trans. 2019, 48, 17045.
- [14] J. Chen, A. Draksharapu, D. Angelone, D. Unjaroen, S. K. Padamati, R. Hage, M. Swart, C. Duboc, W. R. Browne, ACS Catal. 2018, 8, 9665.
- [15] G. Roelfes, M. Lubben, R. Hage, L. Que, Jr., B. L. Feringa, Chem. Eur. J. 2000. 6, 2152.
- [16] J. Kaizer, E. J. Klinker, N. Y. Oh, J.-U. Rohde, W. J. Song, A. Stubna, J. Kim, E. Münck, W. Nam, L. Que, J. Am. Chem. Soc. 2004, 126, 472.
- [17] F. Thorning, P. Henke, P. R. Ogilby, J. Am. Chem. Soc. 2022, 144, 10902.
- [18] M. Bregnhøj, M. Westberg, F. Jensen, P. R. Ogilby, Phys. Chem. Chem. Phys. 2016, 18, 22946.
- [19] T. Yang, J. Choo, S. Stavrakis, A. de Mello, Chem. Eur. J. 2018, 24, 12078.
- [20] M. Orfanopoulos, Photochem. Photobiol. 2021, 97, 1182.
- [21] K. N. Ingenbosch, S. Quint, M. Dyllick-Brenzinger, D. S. Wunschik, J. Kiebist, P. Süss, U. Liebelt, R. Zuhse, U. Menyes, K. Scheibner, C. Mayer, K. Opwis, J. S. Gutmann, K. Hoffmann-Jacobsen, ChemBioChem 2021, 22, 398.
- [22] J. Rudback, M. A. Bergstrom, A. Borje, U. Nilsson, A. T. Karlberg, Chem. Res. Toxicol. 2012, 25, 713.
- [23] J. M. Aubry, J. Am. Chem. Soc. 1985, 107, 5844.
- [24] J. M. Aubry, B. Cazin, Inorg. Chem. 1988, 27, 2013.
- [25] J. M. Aubry, B. Cazin, F. Duprat, J. Org. Chem. 1989, 54, 726.
- [26] V. Nardello, J. Marko, G. Vermeersch, J. M. Aubry, Inorg. Chem. 1995, 34, 4950.
- [27] V. Nardello, S. Bogaert, P. L. Alsters, J.-M. Aubry, Tetrahedron Lett. 2002, 43, 8731.
- [28] P. L. Alsters, W. Jary, V. Nardello-Rataj, J.-M. Aubry, Org. Process Res. Dev. 2010, 14, 259.
- [29] F. van Laar, D. De Vos, D. Vanoppen, B. Sels, P. A. Jacobs, A. Del-Guerzo, F. Pierard, A. Kirsch-DeMesmaeker, Chem. Commun. 1998, 267–268.
- [30] M. Elsherbini, R. K. Allemann, T. Wirth, Chem. Eur. J. 2019, 25, 12486. [31] W. Adam, D. V. Kazakov, V. P. Kazakov, Chem. Rev. 2005, 105, 3371.
- [32] K. Bohme, H. D. Brauer, Inorg. Chem. 1992, 31, 3468.
- [33] J. N. Harvey, WIREs Comput. Mol. Sci. 2014, 4, 1.
- [34] P. Ulanski, C. Von Sonntag, J. Chem. Soc. Perkin Trans. 2 1999, 165–168.
- [35] B. C. Gilbert, R. O. C. Norman, R. C. Sealy, J. Chem. Soc. Perkin Trans. 2 **1974**, 824-830.
- [36] E. J. Baerends, ADF 20016.01; SCM: Amsterdam 2016.
- [37] G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
- [38] M. Swart, F. M. Bickelhaupt, J. Comput. Chem. 2008, 29, 724.
- [39] M. Swart, Chem. Phys. Lett. 2013, 580, 166.
- [40] M. Swart, M. Gruden, Acc. Chem. Res. 2016, 49, 2690.
- [41] M. Swart, E. Rösler, F. M. Bickelhaupt, Eur. J. Inorg. Chem. 2007, 2007, 3646
- [42] E. V. Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597.

Manuscript received: December 3, 2023 Revised manuscript received: February 4, 2024 Accepted manuscript online: February 8, 2024 Version of record online: ■■, ■

Catalytic decomposition of $\rm H_2O_2$ by an iron catalyst is shown to via a Fe-(III)OOH intermediate. Surprisingly the expected homolysis of the O–O

bound to yield Fe(IV) = O species does not occur significantly and oxidation products are due to radical chain reactions. C. Maurits de Roo, A. S. Sardjan, R. Postmus, Prof. Dr. M. Swart, Prof. Dr. R. Hage*, Prof. Dr. W. R. Browne*

1 – 13

Reaction of (N4Py)Fe with H_2O_2 and the relevance of its Fe(IV) = O species during and after H_2O_2 disproportionation