41 research outputs found

    PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical treatment of various types of pain relies upon the use of opioid analgesics. However most of them produce, in addition to the analgesic effect, several side effects such as the development of dependence and addiction as well as sedation, dysphoria, and constipation. One solution to these problems are chimeric compounds in which the opioid pharmacophore is hybridized with another type of compound to incease antinociceptive effects. Neurotensin-induced antinociception is not mediated through the opioid system. Therefore, hybridizing neurotensin with opioid elements may result in a potent synergistic antinociceptor.</p> <p>Results</p> <p>Using the known structure-activity relationships of neurotensin we have synthesized a new chimeric opioid-neurotensin compound PK20 which is characterized by a very strong antinociceptive potency. The observation that the opioid antagonist naltrexone did not completely reverse the antinociceptive effect, indicates the partial involvement of the nonopioid component in PK20 in the produced analgesia.</p> <p>Conclusions</p> <p>The opioid-neurotensin hybrid analogue PK20, in which opioid and neurotensin pharmacophores overlap partially, expresses high antinociceptive tail-flick effects after central as well as peripheral applications.</p

    In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist - neurokinin 1 receptor antagonist chimera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important limiting factor in the development of centrally acting pharmaceuticals is the blood-brain barrier (BBB). Transport of therapeutic peptides through this highly protective physiological barrier remains a challenge for peptide drug delivery into the central nervous system (CNS). Because the most common strategy to treat moderate to severe pain consists of the activation of opioid receptors in the brain, the development of active opioid peptide analogues as potential analgesics requires compounds with a high resistance to enzymatic degradation and an ability to cross the BBB.</p> <p>Results</p> <p>Herein we report that tetrapeptide analogues of the type H-Dmt<sup>1</sup>-Xxx<sup>2</sup>-Yyy<sup>3</sup>-Gly<sup>4</sup>-NH<sub>2 </sub>are transported into the brain after intravenous and subcutaneous administration and are able to activate the μ- and δ opioid receptors more efficiently and over longer periods of time than morphine. Using the hot water tail flick test as the animal model for antinociception, a comparison in potency is presented between a side chain conformationally constrained analogue containing the benzazepine ring (BVD03, Yyy<sup>3</sup>: Aba), and a "ring opened" analogue (BVD02, Yyy<sup>3</sup>: Phe). The results show that in addition to the increased lipophilicity through amide bond N-methylation, the conformational constraint introduced at the level of the Phe<sup>3 </sup>side chain causes a prolonged antinociception. Further replacement of NMe-D-Ala<sup>2 </sup>by D-Arg<sup>2 </sup>in the tetrapeptide sequence led to an improved potency as demonstrated by a higher and maintained antinociception for AN81 (Xxx<sup>2</sup>: D-Arg) vs. BVD03 (Xxx<sup>2</sup>: NMe-D-Ala). A daily injection of the studied opioid ligands over a time period of 5 days did however result in a substantial decrease in antinociception on the fifth day of the experiment. The compact opioid agonist - NK1 antagonist hybrid SBCHM01 could not circumvent opioid induced tolerance.</p> <p>Conclusions</p> <p>We demonstrated that the introduction of a conformational constraint has an important impact on opioid receptor activation and subsequent antinociception in vivo. Further amino acid substitution allowed to identify AN81 as an opioid ligand able to access the CNS and induce antinociception at very low doses (0.1 mg/kg) over a time period up to 7 hours. However, tolerance became apparent after repetitive i.v. administration of the investigated tetrapeptides. This side effect was also observed with the dual opioid agonist-NK1 receptor antagonist SBCHM01.</p

    Neuroprotective Potential of Biphalin, Multireceptor Opioid Peptide, Against Excitotoxic Injury in Hippocampal Organotypic Culture

    Get PDF
    Biphalin is a dimeric opioid peptide that exhibits affinity for three types of opioid receptors (MOP, DOP and KOP). Biphalin is undergoing intensive preclinical study. It was recognized that activation of δ-opioid receptor elicits neuroprotection against brain hypoxia and ischemia. We compare the effect of biphalin and morphine and the inhibition of opioid receptors by naltrexone on survival of neurons in rat organotypic hippocampal cultures challenged with NMDA. Findings: (1) 0.025–0.1 μM biphalin reduces NMDA-induced neuronal damage; (2) biphalin neuroprotection is abolished by naltrexone; (3) reduced number of dead cells is shown even if biphalin is applied with delay after NMDA challenge

    Different blood pressure responses to opioids in three rat hypertension models: role of the baseline status of sympathetic and renin-angiotensin systems

    No full text
    Opioids interact with sympathetic and renin-angiotensin systems in control of arterial pressure (MAP). Our earlier finding that biphalin, a synthetic enkephalin analogue, decreased MAP in anaesthetized spontaneously hypertensive rats (SHR) prompted us to further explore this action, to get new insights into pathogenesis of various forms of hypertension. Biphalin effects were studied in SHR, uninephrectomized rats on high-salt diet (HS/UNX), and rats with angiotensin-induced hypertension (Ang-iH). Beside MAP, renal and iliac blood flows (RBF, IBF) and vascular resistances were measured. In anaesthetized and conscious SHR biphalin, 300 Îźg h-1kg-1 i.v., decreased MAP by ~10 and ~20 mmHg, respectively (PThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Synthesis and binding characteristics of [H-3]neuromedin N, a NTS2 receptor ligand

    No full text
    Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [H-3]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454 nM in rat brain and 425 nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8 +/- 30.18 nM, while the B-max value corresponded to 3.8 02 pmol/mg protein in rat brain membranes. The specific binding of [H-3]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na+ ions was observed on the binding of resulting in an IC50 of 150.6 inM. In [S-35]GTP gamma S binding experiments the E-max value was 112.3 +/- 1.4% in rat brain and 112.9 +/- 2.4% in rat spinal cord membranes and EC50 values of 0.7 nM and 0.79 nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [H-3]NN labels NTS2 receptors in rat brain membranes. (C) 2015 Elsevier Ltd. All rights reserved
    corecore