39 research outputs found

    Małopłytkowość indukowana protaminą — nowy problem czy inny typ małopłytkowości poheparynowej?

    Get PDF
    Protamine is widely used to neutralize the anticoagulant effects of unfractionated heparin, particularly after cardiac surgery. Recent reports suggest that some patients undergoing cardiopulmonary bypass exposed to heparin and protamine may develop thrombocytopenia. Multimolecular protamine-heparin complexes lead to immunization and production of immunoglobulin G class antibodies that may activate platelets through FcγIIa receptors. Some patients injected with protamine during cardiopulmonary bypass have increased the risk of early thromboembolic events due to the presence of these antibodies in the blood. In the present review, we will focus on studies investigating the mechanism of platelet activation by anti-protamine-heparin antibodies. We will compare antibodies that are associated with immune heparin-induced thrombocytopenia. In addition, we will describe the clinical consequences of protamine-induced thrombocytopenia, risk factors and general guidelines for management of thromboembolic complications in the post-cardiac surgery patients.Protamina jest powszechnie stosowanym środkiem odwracającym antykoagulacyjne działanie heparyny niefrakcjonowanej, szczególnie po zabiegach kardiochirurgicznych. Najnowsze badania wskazują, że część pacjentów poddanych zabiegowi krążenia pozaustrojowego jest narażona na trombocytopenię w trakcie ekspozycji na heparynę. Wielkocząsteczkowe kompleksy protaminy i heparyny wywołują immunizację i produkcję immunoglobulin G, które aktywują płytki krwi za pośrednictwem receptora FcγIIa. Podczas krążenia pozaustrojowego infuzja protaminy u niektórych pacjentów zwiększa ryzyko wczesnych powikłań zakrzepowych, spowodowanych obecnością tych przeciwciał we krwi. W niniejszym przeglądzie skupiono się na pracach, w których przebadano mechanizm aktywacji płytek krwi przez anty-protaminowo-heparynowe przeciwciała. Porównano je z przeciwciałami wywołującymi immunologiczną małopłytkowość poheparynową. Ponadto opisano kliniczne konsekwencje trombocytopenii indukowanej protaminą, czynniki ryzyka i ogólne wytyczne dotyczące terapii powikłań zakrzepowo-zatorowych u pacjentów kardiochirurgicznych

    The toxicokinetic profile of Dex40-GTMAC3 : a novel polysaccharide candidate for reversal of unfractionated heparin

    Get PDF
    Though protamine sulfate is the only approved antidote of unfractionated heparin (UFH), yet may produce life threatening side effects such as systemic hypotension, catastrophic pulmonary vasoconstriction or allergic reactions. We have described 40 kDa dextrans (Dex40) substituted with glycidyltrimethylammonium chloride (GTMAC) as effective, immunogenically and hemodynamically neutral inhibitors of UFH. The aim of the present study was to evaluate in mice and rats toxicokinetic profile of the most promising polymer – Dex40-GTMAC3. Polymer was rapidly eliminated with a half-time of 12.5±3.0 min in Wistar rats, and was mainly distributed to the kidneys and liver in mice. The safety studies included the measurement of blood count and blood biochemistry, erythrocyte osmotic fragility and the evaluation of the histological alterations in kidneys, liver and lungs of mice and rats in acute and chronic experiments. We found that Dex40-GTMAC3 is not only effective but also very well tolerated. Additionally, we found that protamine may cause overt hemolysis with appearance of permanent changes in the liver and kidneys. In summary, fast renal clearance behavior and generally low tissue accumulation of Dex40-GTMAC3 is likely to contribute to its superior to protamine biocompatibility. Intravenous administration of therapeutic doses to living animals does not result in the immunogenic, hemodynamic, blood and organ toxicity. Dex40-GTMAC3 seems to be a promising effective and safe candidate for further clinical development as new UFH reversal agent

    Inhibition of platelet aggregation by carbon monoxide-releasing molecules (CO-RMs): comparison with NO donors

    Get PDF
    Carbon monoxide (CO) and CO-releasing molecules (CO-RMs) inhibit platelet aggregation in vitro. Herein, we compare the anti-platelet action of CORM-3, which releases CO rapidly (t½ 1 min), and CORM-A1, which slowly releases CO (t½ = 21 min). The anti-platelet effects of NO donors with various kinetics of NO release were studied for comparison. The effects of CO-RMs and NO donors were analyzed in washed human platelets (WP), platelets rich plasma (PRP), or whole blood (WB) using aggregometry technique. CORM-3 and CORM-A1 inhibited platelet aggregation in human PRP, WP, or WB, in a concentration-dependent manner. In all three preparations, CORM-A1 was more potent than CORM-3. Inhibition of platelets aggregation by CORM-A1 was not significantly affected by a guanylate cyclase inhibitor (ODQ) and a phosphodiesterase-5 inhibitor, sildenafil. In contrast, inhibition of platelet aggregation by NO donors was more potent with a fast NO releaser (DEA-NO, t½ = 2 min) than slow NO releasers such as PAPA-NO (t½ = 15 min) or other slow NO donors. Predictably, the anti-platelet effect of DEA-NO and other NO donors was reversed by ODQ while potentiated by sildenafil. In contrast to NO donors which inhibit platelets proportionally to the kinetics of NO released via activation of soluble guanylate cyclase (sGC), the slow CO-releaser CORM-A1 is a superior anti-platelet agent as compared to CORM-3 which releases CO instantly. The anti-platelet action of CO-RMs does not involve sGC activation. Importantly, CORM-A1 or its derivatives representing the class of slow CO releasers display promising pharmacological profile as anti-platelet agents

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Monitoring of Cardiorespiratory Parameters in Rats—Validation Based on Pharmacological Stimulation

    No full text
    The methods used in preclinical studies should minimize the suffering and the number of animals but still provide precise and consistent results enabling the introduction of drug candidates into the phase of clinical trials. Thus, we aimed to develop a method allowing us to perform preliminary safety and toxicity studies of candidates for human medicines, while reducing the number of animals. We have devised a method based on a combination of two devices: Plugsys (Transonics System Inc., Ithaca, NY, USA) and PhysioSuite (Kent Scientific Corporation, Torrington, CT, USA), which allow simultaneous registration of nine circulatory and respiratory parameters, and body temperature. Vehicle and adrenaline, or nitroglycerin, as reference substances were administered into the right femoral vein of Wistar rats. Physiological conditions were registered over 60 min after drug administration by measuring systolic, diastolic and mean blood pressure, heart rate (HR), blood perfusion of paw vessels, blood oxygen saturation, respiratory rate, average and peak exhaled CO2, and body temperature. Blood pressure was measured by cannula placed in the left common carotid artery and connected to the pressure transducer (Plugsys). The other parameters were measured by the PhysioSuite. Adrenaline-induced immediate dose-related hypertension and nitroglycerin hypotension were correlated with the change in blood perfusion. They both increased HR. Adrenaline decreased blood oxygen saturation and slightly affected respiratory parameters, while nitroglycerin caused a progressive increase in respiratory rate and a decrease in the peak of exhaled CO2. Our method may become an inseparable part of the preliminary safety and toxicity studies of tested drugs, while being an important step towards improving animal welfare
    corecore