145 research outputs found

    Using a Logic Programming Framework to Control Database Query Dialogues in Natural Language

    Get PDF
    We present a natural language question/answering system to interface the University of Évora databases that uses clarification dialogs in order to clarify user questions. It was developed in an integrated logic programming framework, based on constraint logic programming using the GnuProlog(-cx) language [2,11] and the ISCO framework [1]. The use of this LP framework allows the integration of Prolog-like inference mechanisms with classes and inheritance, constraint solving algorithms and provides the connection with relational databases, such as PostgreSQL. This system focus on the questions’ pragmatic analysis, to handle ambiguity, and on an efficient dialogue mechanism, which is able to place relevant questions to clarify the user intentions in a straightforward manner. Proper Nouns resolution and the pp-attachment problem are also handled. This paper briefly presents this innovative system focusing on its ability to correctly determine the user intention through its dialogue capability

    Neural legal judgment prediction in English

    Get PDF
    Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case's facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT's length limitation

    An empirical study on large-scale multi-label text classification including few and zero-shot labels

    Get PDF
    Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications and presents interesting challenges. First, not all labels are well represented in the training set, due to the very large label set and the skewed label distributions of LMTC datasets. Also, label hierarchies and differences in human labelling guidelines may affect graph-aware annotation proximity. Finally, the label hierarchies are periodically updated, requiring LMTC models capable of zero-shot generalization. Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs), which (1) typically treat LMTC as flat multi-label classification; (2) may use the label hierarchy to improve zero-shot learning, although this practice is vastly understudied; and (3) have not been combined with pre-trained Transformers (e.g. BERT), which have led to state-of-the-art results in several NLP benchmarks. Here, for the first time, we empirically evaluate a battery of LMTC methods from vanilla LWANs to hierarchical classification approaches and transfer learning, on frequent, few, and zero-shot learning on three datasets from different domains. We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs. Furthermore, we show that Transformer-based approaches outperform the state-of-the-art in two of the datasets, and we propose a new state-of-the-art method which combines BERT with LWANs. Finally, we propose new models that leverage the label hierarchy to improve few and zero-shot learning, considering on each dataset a graph-aware annotation proximity measure that we introduce
    • …
    corecore