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Abstract

Large-scale Multi-label Text Classification

(LMTC) has a wide range of Natural Language

Processing (NLP) applications and presents in-

teresting challenges. First, not all labels are

well represented in the training set, due to the

very large label set and the skewed label dis-

tributions of LMTC datasets. Also, label hi-

erarchies and differences in human labelling

guidelines may affect graph-aware annotation

proximity. Finally, the label hierarchies are

periodically updated, requiring LMTC models

capable of zero-shot generalization. Current

state-of-the-art LMTC models employ Label-

Wise Attention Networks (LWANs), which (1)

typically treat LMTC as flat multi-label clas-

sification; (2) may use the label hierarchy to

improve zero-shot learning, although this prac-

tice is vastly understudied; and (3) have not

been combined with pre-trained Transformers

(e.g. BERT), which have led to state-of-the-art

results in several NLP benchmarks. Here, for

the first time, we empirically evaluate a battery

of LMTC methods from vanilla LWANs to hi-

erarchical classification approaches and trans-

fer learning, on frequent, few, and zero-shot

learning on three datasets from different do-

mains. We show that hierarchical methods

based on Probabilistic Label Trees (PLTs) out-

perform LWANs. Furthermore, we show that

Transformer-based approaches outperform the

state-of-the-art in two of the datasets, and we

propose a new state-of-the-art method which

combines BERT with LWAN. Finally, we pro-

pose new models that leverage the label hier-

archy to improve few and zero-shot learning,

considering on each dataset a graph-aware an-

notation proximity measure that we introduce.

1 Introduction

Large-scale Multi-label Text Classification (LMTC)

is the task of assigning a subset of labels from

a large predefined set (typically thousands) to a

given document. LMTC has a wide range of ap-

plications in Natural Language Processing (NLP),

Figure 1: Examples from LMTC label hierarchies. ∅
is the root label. Ll is the number of labels per

level. Yellow nodes denote gold label assignments. In

EURLEX57K, documents have been tagged with both

leaves and inner nodes (GAP: 0.45). In MIMIC-III, only

leaf nodes can be used, causing the label assignments

to be much sparser (GAP: 0.27). In AMAZON13K, doc-

uments are tagged with leaf nodes, but it is assumed

that all the parent nodes are also assigned, leading to

dense label assignments (GAP: 0.86).

such as associating medical records with diagnos-

tic and procedure labels (Mullenbach et al., 2018;

Rios and Kavuluru, 2018), legislation with relevant

legal concepts (Mencia and Fürnkranzand, 2007;

Chalkidis et al., 2019b), and products with cate-

gories (Lewis et al., 2004; Partalas et al., 2015).

Apart from the large label space, LMTC datasets

often have skewed label distributions (e.g., some

labels have few or no training examples) and a la-

bel hierarchy with different labelling guidelines

(e.g., they may require documents to be tagged

only with leaf nodes, or they may allow both leaf

and other nodes to be used). The latter affects

graph-aware annotation proximity (GAP), i.e., the

proximity of the gold labels in the label hierar-

chy (see Section 4.1). Moreover, the label set and

the hierarchies are periodically updated, thus re-

quiring zero- and few-shot learning to cope with
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newly introduced labels. Figure 1 shows a sam-

ple of label hierarchies, with different label assign-

ment guidelines, from three standard LMTC bench-

mark datasets: EUR-LEX (Chalkidis et al., 2019b),

MIMIC-III (Johnson et al., 2017), and AMAZON

(McAuley and Leskovec, 2013)).

Current state-of-the-art LMTC models are based

on Label-Wise Attention Networks (LWANs) (Mul-

lenbach et al., 2018), which use a different atten-

tion head for each label. LWANs (1) typically do

not leverage structural information from the label

hierarchy, treating LMTC as flat multi-label clas-

sification; (2) may use the label hierarchy to im-

prove performance in few/zero-shot scenario, but

this practice is vastly understudied; and (3) have

not been combined with pre-trained Transformers.

We empirically evaluate, for the first time, a

battery of LMTC methods, from vanilla LWANs

to hierarchical classification approaches and trans-

fer learning, in frequent, few, and zero-shot learn-

ing scenarios. We experiment with three standard

LMTC datasets (EURLEX57K; MIMIC-III; AMA-

ZON13K). Our contributions are the following:

• We show that hierarchical LMTC ap-

proaches based on Probabilistic Label Trees

(PLTs) (Prabhu et al., 2018; Khandagale

et al., 2019; You et al., 2019) outperform flat

neural state-of-the-art methods, i.e., LWAN

(Mullenbach et al., 2018) in two out of three

datasets (EURLEX57K, AMAZON13K).

• We demonstrate that pre-trained Transformer-

based approaches (e.g., BERT) further im-

prove the results in two of the three datasets

(EURLEX57K, AMAZON13K), and we pro-

pose a new method that combines BERT with

LWAN achieving the best results overall.

• Finally, following the work of Rios and Kavu-

luru (2018) for few and zero-shot learning on

MIMIC-III, we investigate the use of structural

information from the label hierarchy in LWAN.

We propose new LWAN-based models with im-

proved performance in these settings, taking

into account the labelling guidelines of each

dataset and a graph-aware annotation proxim-

ity (GAP) measure that we introduce.

2 Related Work

2.1 Advances and limitations in LMTC

In LMTC, deep learning achieves state-of-the-art

results with LWANs (You et al., 2018; Mullenbach

et al., 2018; Chalkidis et al., 2019b), in most cases

comparing to naive baselines (e.g., vanilla CNNs or

vanilla LSTMs). The computational complexity of

LWANs, however, makes it difficult to scale them

up to extremely large label sets. Thus, Probabilistic

Label Trees (PLTs) (Jasinska et al., 2016; Prabhu

et al., 2018; Khandagale et al., 2019) are preferred

in Extreme Multi-label Text Classification (XMTC),

mainly because the linear classifiers they use at

each node of the partition trees can be trained inde-

pendently considering few labels at each node. This

allows PLT-based methods to efficiently handle ex-

tremely large label sets (often millions), while also

achieving top results in XMTC. Nonetheless, previ-

ous work has not thoroughly compared PLT-based

methods to neural models in LMTC. In particular,

only You et al. (2018) have compared PLT methods

to neural models in LMTC, but without adequately

tuning their parameters, nor considering few and

zero-shot labels. More recently, You et al. (2019)

introduced ATTENTION-XML, a new method pri-

marily intended for XMTC, which combines PLTs

with LWAN classifiers. Similarly to the rest of PLT-

based methods, it has not been evaluated in LMTC.

2.2 The new paradigm of transfer learning

Transfer learning (Ruder et al., 2019; Rogers et al.,

2020), which has recently achieved state-of-the-art

results in several NLP tasks, has only been consid-

ered in legal LMTC by Chalkidis et al. (2019b), who

experimented with BERT (Devlin et al., 2019) and

ELMO (Peters et al., 2018). Other BERT variants,

e.g. ROBERTA (Liu et al., 2019), or BERT-based

models have not been explored in LMTC so far.

2.3 Few and zero-shot learning in LMTC

Finally, few and zero-shot learning in LMTC is

mostly understudied. Rios and Kavuluru (2018)

investigated the effect of encoding the hierarchy

in these settings, with promising results. How-

ever, they did not consider other confounding fac-

tors, such as using deeper neural networks at the

same time, or alternative encodings of the hierarchy.

Chalkidis et al. (2019b) also considered few and

zero-shot learning, but ignoring the label hierarchy.

Our work is the first attempt to systematically com-

pare flat, PLT-based, and hierarchy-aware LMTC

methods in frequent, few-, and zero-shot learning,

and the first exploration of the effect of transfer

learning in LMTC on multiple datasets.



3 Models

3.1 Notation for neural methods

We experiment with neural methods consisting of:

(i) a token encoder (Ew), which makes token em-

beddings (wt) context-aware (ht); (ii) a document

encoder (Ed), which turns a document into a sin-

gle embedding; (iii) an optional label encoder (El),
which turns each label into a label embedding; (iv)

a document decoder (Dd), which maps the docu-

ment to label probabilities. Unless otherwise stated,

tokens are words, and Ew is a stacked BIGRU.

3.2 Flat neural methods

BIGRU-LWAN: In this model (Chalkidis et al.,

2019b),1 Ed uses one attention head per label to

generate L document representations dl:

alt =
exp(h⊤t ul)

∑

t′ exp(h
⊤
t′ul)

, dl =
1

T

T
∑

t=1

altht (1)

T is the document length in tokens, ht the context-

aware representation of the t-th token, and ul
a trainable vector used to compute the attention

scores of the l-th attention head; ul can also be

viewed as a label representation. Intuitively, each

head focuses on possibly different tokens of the

document to decide if the corresponding label

should be assigned. In this model, Dd employs

L linear layers with sigmoid activations, each op-

erating on a different label-wise document repre-

sentation dl, to produce the probability of the cor-

responding label.

3.3 Hierarchical PLT-based methods

In PLT-based methods, each label is represented as

the average of the feature vectors of the training

documents that are annotated with this label. The

root of the PLT corresponds to the full label set.

The label set is partitioned into k subsets using k-

means clustering, and each subset is represented

by a child node of the root in the PLT. The labels

of each new node are then recursively partitioned

into k subsets, which become children of that node

in the PLT. If the label set of a node has fewer

than m labels, the node becomes a leaf and the

recursion terminates. During inference, the PLT

is traversed top down. At each non-leaf node, a

multi-label classifier decides which children nodes

1The original model was proposed by Mullenbach et al.
(2018), with a CNN token encoder (Ew). Chalkidis et al.
(2019b) show that BIGRU is a better encoder than CNNs. See
also the supplementary material for a detailed comparison.

(if any) should be visited by considering the feature

vector of the document. When a leaf node is visited,

the multi-label classifier of that node decides which

labels of the node will be assigned to the document.

PARABEL, BONSAI: We experiment with PARA-

BEL (Prabhu et al., 2018) and BONSAI (Khandagale

et al., 2019), two state-of-the-art PLT-based meth-

ods. PARABEL employs binary PLTs (k = 2), while

BONSAI uses non-binary PLTs (k > 2), which are

shallower and wider. In both methods, a linear

classifier is used at each node, and documents are

represented by TF-IDF feature vectors.

ATTENTION-XML: Recently, You et al. (2019)

proposed a hybrid method that aims to leverage

the advantages of both PLTs and neural models.

Similarly to BONSAI, ATTENTION-XML uses non-

binary trees. However, the classifier at each node of

the PLT is now an LWAN with a BILSTM token en-

coder (Ew), instead of a linear classifier operating

on TF-IDF document representations.

3.4 Transfer learning based LMTC

BIGRU-LWAN-ELMO: In this model, we use

ELMO (Peters et al., 2018) to obtain context-

sensitive token embeddings, which we concatenate

with the pre-trained word embeddings to obtain

the initial token embeddings (wt) of BIGRU-LWAN.

Otherwise, the model is the same as BIGRU-LWAN.

BERT, ROBERTA: Following Devlin et al. (2019),

we feed each document to BERT and obtain the top-

level representation hCLS of BERT’s special CLS to-

ken as the (single) document representation. Dd is

now a linear layer with L outputs and sigmoid acti-

vations which operates directly on hCLS, producing

a probability for each label. The same arrangement

applies to ROBERTA (Liu et al., 2019).2

BERT-LWAN: Given the large size of the label set

in LMTC datasets, we propose a combination of

BERT and LWAN. Instead of using hCLS as the doc-

ument representation and pass it through a linear

layer with L outputs (as with BERT and ROBERTA),

we pass all the top-level output representations of

BERT into a label-wise attention mechanism. The

entire model (BERT-LWAN) is jointly trained, also

fine-tuning the underlying BERT encoder.

2Unlike BERT, ROBERTA uses dynamic masking, it elimi-
nates the next sentence prediction pre-training task, and uses
a larger vocabulary. Liu et al. (2019) reported better results in
NLP benchmarks using ROBERTA.



3.5 Zero-shot LMTC

C-BIGRU-LWAN is a zero-shot capable extension

of BIGRU-LWAN. It was proposed by Rios and

Kavuluru (2018), but with a CNN encoder; instead,

we use a BIGRU. In this method, El creates ul as

the centroid of the token embeddings of the cor-

responding label descriptor. The label representa-

tions ul are then used by the attention heads.

vt = tanh(Wht + b) (2)

alt =
exp(v⊤t ul)

∑

t′ exp(v
⊤
t′ ul)

, dl =
1

T

T
∑

t=1

altht (3)

Here ht are the context-aware embeddings of Ew,

alt is the attention score of the l-th attention head

for the t-th document token, viewed as vt (Eq. 2), dl
is the label-wise document representation for the l-

th label. Dd also relies on the label representations

ul to produce each label probability pl.

pl = sigmoid(u⊤l dl) (4)

The centroid label representations ul of both en-

countered (during training) and unseen (zero-shot)

labels remain unchanged, because the token embed-

dings in the centroids are not updated. This keeps

the representations of unseen labels close to those

of similar labels encountered during training. In

turn, this helps the attention mechanism (Eq. 3) and

the decoder (Eq. 4) cope with unseen labels that

have similar descriptors with encountered labels.

GC-BIGRU-LWAN: This model, originally pro-

posed by Rios and Kavuluru (2018), applies graph

convolutions (GCNs) to the label hierarchy.3 The in-

tuition is that the GCNs will help the representations

of rare labels benefit from the (better) representa-

tions of more frequent labels that are nearby in the

label hierarchy. El now creates graph-aware label

representations u3l from the corresponding label

descriptors (we omit the bias terms for brevity) as

follows:

u1l =f(W 1
s ul +

∑

j∈Np,l

W 1
p uj

|Np,l|
+

∑

j∈Nc,l

W 1
c uj

|Nc,l|
) (5)

u2l =f(W 2
s u

1
l +

∑

j∈Np,l

W 2
p u

1
j

|Np,l|
+

∑

j∈Nc,l

W 2
c u

1
j

|Nc,l|
) (6)

u3l =[ul;u
2
l ] (7)

3The original model uses a CNN token encoder (Ew),
whereas we use a BIGRU encoder, which is a better encoder.
See the supplementary material for a detailed comparison.

where ul is again the centroid of the token embed-

dings of the descriptor of the l-th label; W i
s , W i

p,

W i
c are matrices for self, parent, and children nodes

of each label; Np,l, Nc,l are the sets of parents and

children of the the l-th label; and f is the tanh ac-

tivation. The label-wise document representations

dl are again produced by Ed, as in C-BIGRU-LWAN

(Eq. 2–3), but they go through an additional dense

layer with tanh activation (Eq. 8). The resulting

document representations dl,o and the graph-aware

label representations u3l are then used by Dd to

produce a probability pl for each label (Eq. 9).

dl,o = tanh(Wodl + bo) (8)

pl = sigmoid
(

(u3l )
⊤dlo

)

(9)

DC-BIGRU-LWAN: The stack of GCN layers in GC-

BIGRU-LWAN (Eq. 5–6) can be turned into a plain

two-layer Multi-Layer Perceptron (MLP), unaware

of the label hierarchy, by setting Np,l = Nc,l =
∅. We call DC-BIGRU-LWAN the resulting (deeper

than C-BIGRU-LWAN) variant of GC-BIGRU-LWAN.

We use it as an ablation method to evaluate the

impact of the GCN layers on performance.

DN-BIGRU-LWAN: As an alternative approach to

exploit the label hierarchy, we used a recent im-

provement of NODE2VEC (Grover and Leskovec,

2016) by Kotitsas et al. (2019) to obtain alternative

hierarchy-aware label representations. NODE2VEC

is similar to WORD2VEC (Mikolov et al., 2013),

but pre-trains node embeddings instead of word

embeddings, replacing WORD2VEC’s text windows

by random walks on a graph (here the label hier-

archy).4 In a variant of DC-BIGRU-LWAN, dubbed

DN-BIGRU-LWAN, we simply replace the initial

centroid ul label representations of DC-BIGRU-

LWAN in Eq. 5 and 7 by the label representations

gl generated by the NODE2VEC extension.

DNC-BIGRU-LWAN: In another version of DC-

BIGRU-LWAN, called DNC-BIGRU-LWAN, we re-

place the initial centroid ul label representations of

DC-BIGRU-LWAN by the concatenation [ul; gl].

GNC-BIGRU-LWAN: Similarly, we expand GC-

BIGRU-LWAN with the hierarchy-aware label repre-

sentations of the NODE2VEC extension. Again, we

replace the centroid ul label representations of GC-

BIGRU-LWAN in Eq. 5 and 7 by the label representa-

tions gl of the NODE2VEC extension. The resulting

4The NODE2VEC extension we used also considers the tex-
tual descriptors of the nodes, using an RNN encoder operating
on token embeddings.



model, GNC-BIGRU-LWAN, uses both NODE2VEC

and the GCN layers to encode the label hierarchy,

thus obtaining knowledge from the label hierarchy

both in a self-supervised and a supervised fashion.

4 Experimental Setup

4.1 Graph-aware Annotation Proximity

In this work, we introduce graph-aware label prox-

imity (GAP), a measure of the topological proximity

(on the label hierarchy) of the gold labels assigned

to documents. GAP turns out to be a key factor

in the performance of hierarchy-aware zero-shot

capable extensions of BIGRU-LWAN. Let G(L,E)
be the graph of the label hierarchy, where L is the

set of nodes (label set) and E the set of edges.

Let Ld ⊆ L be the set of gold labels a partic-

ular document d is annotated with. Finally, let

G+

d (L
+

d , E
+

d ) be the minimal (in terms of |L+

d |)
subgraph of G(L,E), with Ld ⊆ L+

d ⊆ L and

E+

d ⊆ E, such that for any two nodes (gold labels)

l1, l2 ∈ Ld, the shortest path between l1, l2 in the

full graph G(L,E) is also a path in G+

d (L
+

d , E
+

d ).
Intuitively, we extend Ld to L+

d by including ad-

ditional labels that lie between any two assigned

labels l1, l2 on the shortest path that connects l1, l2

in the full graph. We then define GAPd = |Ld|

|L+

d
|
.

By averaging GAPd over all the documents d of a

dataset, we obtain a single GAP score per dataset

(Fig. 1). When the assigned (gold) labels of the

documents are frequently neighbours in the full

graph (label hierarchy), we need to add fewer la-

bels when expanding the Ld of each document to

L+

d ; hence, GAP → 1. When the assigned (gold)

labels are frequently remote to each other, we need

to add more labels (|L+

d | ≫ |Ld|) and GAP → 0.

GAP should not be confused with label den-

sity (Tsoumakas and Katakis, 2009), defined as

D = 1

N

∑N
d=1

|Ld|
|L| , where N is the total number of

documents. Although label density is often used in

the multi-label classification literature, it is graph-

unaware, i.e., it does not consider the positions (and

distances) of the assigned labels in the graph.

4.2 Data

EURLEX57K (Chalkidis et al., 2019b) contains

57k English legislative documents from EUR-

LEX.5 Each document is annotated with one or

more concepts (labels) from the 4,271 concepts

of EUROVOC.6 The average document length is

5http://eur-lex.europa.eu/
6http://eurovoc.europa.eu/

approx. 727 words. The labels are divided in fre-

quent (746 labels), few-shot (3,362), and zero-shot

(163), depending on whether they were assigned

to n > 50, 1 < n ≤ 50, or no training documents.

They are organized in a 6-level hierarchy, which

was not considered in the experiments of Chalkidis

et al. (2019b). The documents are labeled with

concepts from all levels (Fig. 1), but in practice if a

label is assigned, none of its ancestor or descendent

labels are assigned. The resulting GAP is 0.45.

MIMIC-III (Johnson et al., 2017) contains approx.

52k English discharge summaries from US hospi-

tals. The average document length is approx. 1.6k

words. Each summary has one or more codes (la-

bels) from 8,771 leaves of the ICD-9 hierarchy,

which has 8 levels (Fig. 1).7 Labels are divided

in frequent (4,112 labels), few-shot (4,216 labels),

and zero-shot (443 labels), depending on whether

they were assigned to n > 5, 1 < n ≤ 5, or no

training documents. All discharge summaries are

annotated with leaf nodes (5-digit codes) only, i.e.,

the most fine-grained categories (Fig. 1), causing

the label assignments to be much sparser compared

to EURLEX57K (GAP 0.27).

AMAZON13K (Lewis et al., 2004) contains approx.

1.5M English product descriptions from Amazon.

Each product is represented by a title and a de-

scription, which are on average 250 words when

concatenated. Products are classified into one or

more categories (labels) from a set of approx. 14k.

Labels are divided in frequent (3,108 labels), few-

shot (10,581 labels), zero-shot (579 labels), depend-

ing on whether they were assigned to n > 100,

1 < n ≤ 100, or no training documents. The la-

bels are organized in a hierarchy of 8 levels. If a

product is annotated with a label, all of its ances-

tor labels are also assigned to the product (Fig. 1),

leading to dense label assignments (GAP 0.86).

4.3 Evaluation Measures

The most common evaluation measures in LMTC

are label precision and recall at the top K pre-

dicted labels (P@K, R@K) of each document, and

nDCG@K (Manning et al., 2009), both averaged

over test documents. However, P@K and R@K

unfairly penalize methods when the gold labels of

a document are fewer or more than K, respectively.

R-Precision@K (RP@K) (Chalkidis et al., 2019b),

a top-K version of R-Precision (Manning et al.,

7www.who.int/classifications/icd/en/

http://eur-lex.europa.eu/
http://eurovoc.europa.eu/
www.who.int/classifications/icd/en/


ALL LABELS FREQUENT FEW

RP@K nDCG@K RP@K nDCG@K RP@K nDCG@K

EURLEX57K (LAV G = 5.07,K = 5)

FLAT NEURAL METHODS

BIGRU-LWAN (Chalkidis et al., 2019b) 77.1 80.1 81.0 82.4 65.6 61.7
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 76.8 80.0 80.6 82.3 66.2 61.8

HIERARCHICAL PLT-BASED METHODS

PARABEL (Prabhu et al., 2018) 78.1 80.6 82.4 83.3 59.9 57.3
BONSAI (Khandagale et al., 2019) 79.3 81.8 83.4 84.3 65.0 61.6
ATTENTION-XML (You et al., 2019) 78.1 80.0 81.9 83.1 68.9 64.9

TRANSFER LEARNING

BIGRU-LWAN-ELMO (Chalkidis et al., 2019b) 78.1 81.1 82.1 83.5 66.8 61.9
BERT-BASE (Devlin et al., 2019) 79.6 82.3 83.4 84.6 69.3 64.4
ROBERTA-BASE (Liu et al., 2019) 79.3 81.9 83.4 84.4 67.5 62.4
BERT-BASE-LWAN (new) 80.3 82.9 84.3 85.4 69.9 65.0

MIMIC-III (LAV G = 15.45,K = 15)

FLAT NEURAL METHODS

BIGRU-LWAN (Chalkidis et al., 2019b) 66.2 70.1 66.8 70.6 21.7 14.3
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 64.9 69.1 65.6 69.6 35.9 21.1

HIERARCHICAL PLT-BASED METHODS

PARABEL (Prabhu et al., 2018) 58.7 63.3 59.3 63.7 9.6 6.0
BONSAI (Khandagale et al., 2019) 59.4 64.0 60.0 64.4 11.8 7.9
ATTENTION-XML (You et al., 2019) 69.3 73.4 70.0 73.8 26.9 19.5

TRANSFER LEARNING

BIGRU-LWAN-ELMO (Chalkidis et al., 2019b) 66.8 70.9 67.5 71.3 21.2 13.0
BERT-BASE (Devlin et al., 2019) 52.7 58.1 53.2 58.4 18.2 10.0
ROBERTA-BASE (Liu et al., 2019) 53.7 58.9 54.3 59.2 18.1 10.9
BERT-BASE-LWAN (new) 50.1 55.2 50.6 55.5 15.3 9.1

AMAZON13K (LAV G = 5.04,K = 5)

FLAT NEURAL METHODS

BIGRU-LWAN (Chalkidis et al., 2019b) 83.9 85.4 84.9 86.1 80.0 73.6
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 77.4 79.8 79.1 81.0 53.7 45.8

HIERARCHICAL PLT-BASED METHODS

PARABEL (Prabhu et al., 2018) 85.1 86.7 86.3 87.4 76.8 71.9
BONSAI (Khandagale et al., 2019) 85.1 86.6 86.2 87.3 78.3 73.2
ATTENTION-XML (You et al., 2019) 84.9 86.7 86.0 87.4 76.0 69.7

TRANSFER LEARNING

BIGRU-LWAN-ELMO (Chalkidis et al., 2019b) 85.1 86.6 86.2 87.4 79.9 73.5
BERT-BASE (Devlin et al., 2019) 86.8 88.5 88.5 89.6 70.3 62.2
ROBERTA-BASE (Liu et al., 2019) 84.1 85.9 85.7 87.0 70.6 61.3
BERT-BASE-LWAN (new) 87.3 88.9 88.8 90.0 77.2 68.9

Table 1: Results (%) of experiments across base methods for all, frequent, and few label groups. All base methods

are incapable of zero-shot learning. The best overall results are shown in bold. The best results in each zone are

shown underlined. We show results for K close to the average number of labels LAVG.

2009), is better; it is the same as P@K if there are

at least K gold labels, otherwise K is reduced to the

number of gold labels. When the order of the top-K

labels is unimportant (e.g., for small K), RP@K is

more appropriate than nDCG@K.

4.4 Implementation Details

We implemented neural methods in TENSORFLOW

2, also relying on the HuggingFace Transformers

library for BERT-based models.8 We use the BASE

versions of all models, and the Adam optimizer

(Kingma and Ba, 2015). All hyper-parameters were

tuned selecting values with the best loss on the

8Consult https://tersorflow.org/ and http:

//github.com/huggingface/transformers/.

development data.9 For all PLT-based methods, we

used the code provided by their authors.10

5 Results

5.1 Overall predictive performance

PLTs vs. LWANs: Interestingly, the TF-IDF-based

PARABEL and BONSAI outperform the best pre-

viously published neural LWAN-based models on

EURLEX57K and AMAZON13K, while being com-

parable to ATTENTION-XML, when all or frequent

9See the appendix for details and hyper-parameters.
10

PARABEL: http://manikvarma.org/code/

Parabel/download.html; BONSAI: https:

//github.com/xmc-aalto/bonsai; ATTENTION-
XML: http://github.com/yourh/AttentionXML

https://tersorflow.org/
http://github.com/huggingface/transformers/
http://github.com/huggingface/transformers/
http://manikvarma.org/code/Parabel/download.html
http://manikvarma.org/code/Parabel/download.html
https://github.com/xmc-aalto/bonsai
https://github.com/xmc-aalto/bonsai
http://github.com/yourh/AttentionXML


labels are considered (Table 1). This is not the

case with MIMIC-III, where BIGRU-LWAN and

ATTENTION-XML have far better results for all

and frequent labels. The poor performance of the

two TF-IDF-based PLT-based methods on MIMIC-

III seems to be due to the fact that their TF-IDF

features ignore word order and are not contextual-

ized, which is particularly important in this dataset.

To confirm this, we repeated the experiments of

BIGRU-LWAN on MIMIC-III after shuffling the

words of the documents, and performance dropped

by approx. 7.7% across all measures, matching the

performance of PLT-based methods.11 The dom-

inance of ATTENTION-XML in MIMIC-III further

supports our intuition that word order is particularly

important in this dataset, as the core difference of

ATTENTION-XML with the rest of the PLT-based

methods is the use of RNN-based classifiers that

use word embeddings and are sensitive to word

order, instead of linear classifiers with TF-IDF fea-

tures, which do not capture word order. Mean-

while, in both EURLEX57K and AMAZON13K, the

performance of ATTENTION-XML is competitive

with both TF-IDF-based PLT-based methods and

BIGRU-LWAN, suggesting that the bag-of-words as-

sumption holds in these cases. Thus, we can fairly

assume that word order and global context (long-

term dependencies) do not play a drastic role when

predicting labels (concepts) on these datasets.

Effects of transfer learning: Adding context-

aware ELMO embeddings to BIGRU-LWAN (BIGRU-

LWAN-ELMO) improves performance across all

datasets by a small margin, when considering all

or frequent labels. For EURLEX57K and AMA-

ZON13K, larger performance gains are obtained

by fine-tuning BERT-BASE and ROBERTA-BASE.

Our proposed new method (BERT-BASE-LWAN)

that employs LWAN on top of BERT-BASE has the

best results among all methods on EURLEX57K

and AMAZON13K, when all and frequent labels

are considered. However, in both datasets, the re-

sults are comparable to BERT-BASE, indicating that

the multi-head attention mechanism of BERT can

effectively handle the large number of labels.

Poor performance of BERT on MIMIC-III: Quite

surprisingly, all three BERT-based models perform

poorly on MIMIC-III (Table 1), so we examined

two possible reasons. First, we hypothesized that

this poor performance is due to the distinctive

11By contrast, the drop was less significant in the other
datasets (4.5% in EURLEX57K and 2.8% in AMAZON13K).

Method T̂ F̂ nDCG@15

ATTENTION-XML (You et al., 2019) full-text - 73.4

BERT-BASE (Devlin et al., 2019) 512 1.51 58.1

ROBERTA-BASE (Liu et al., 2019) 512 1.45 58.9

CLINICAL-BERT (Alsentzer et al., 2019) 512 1.60 58.6

SCI-BERT (Beltagy et al., 2019) 512 1.35 60.5

HIER-SCI-BERT (new) 4096 1.35 61.9

Table 2: Performance of BERT and its variants com-

pared to ATTENTION-XML on MIMIC-III. T̂ is the max-

imum number of (possibly sub-word) tokens used per

document. F̂ is the fragmentation ratio, i.e., the number

of tokens (BPEs or wordpieces) per word.

writing style and terminology of biomedical doc-

uments, which are not well represented in the

generic corpora these models are pre-trained on.

To check this hypothesis, we employed CLINICAL-

BERT (Alsentzer et al., 2019), a version of BERT-

BASE that has been further fine-tuned on biomed-

ical documents, including discharge summaries.

Table 2 shows that CLINICAL-BERT performs

slightly better than BERT-BASE on the biomedi-

cal dataset, partly confirming our hypothesis. The

improvement, however, is small and CLINICAL-

BERT still performs worse than ROBERTA-BASE,

which is pre-trained on larger generic corpora with

a larger vocabulary. Examining the token vocab-

ularies (Gage, 1994) of the BERT-based models

reveals that biomedical terms are frequently over-

fragmented; e.g., ‘pneumonothorax’ becomes [‘p’,

‘##ne’, ‘##um’, ‘##ono’, ‘##th’, ‘##orax’], and

‘schizophreniform becomes [‘s’, ‘##chi’, ‘##zo’,

‘##ph’, ‘##ren’, ‘##iform’]. This is also the case

with CLINICAL-BERT, where the original vocabu-

lary of BERT-BASE was retained. We suspect that

such long sequences of meaningless sub-words are

difficult to re-assemble into meaningful units, even

when using deep pre-trained Transformer-based

models. Thus we also report the performance of

SCI-BERT (Beltagy et al., 2019), which was pre-

trained from scratch (including building the vo-

cabulary) on scientific articles, mostly from the

biomedical domain. Indeed SCI-BERT performs

better, but still much worse than ATTENTION-XML.

A second possible reason for the poor perfor-

mance of BERT-based models on MIMIC-III is that

they can process texts only up to 512 tokens long,

truncating longer documents. This is not a problem

in EURLEX57K, because the first 512 tokens con-

tain enough information to classify EURLEX57K

documents (727 words on average), as shown by

Chalkidis et al. (2019b). It is also not a problem in

AMAZON13K, where texts are short (250 words on

average). In MIMIC-III, however, the average docu-

ment length is approx. 1.6k words and documents



EURLEX57K (K = 5) MIMIC-III (K = 15) AMAZON13K (K = 5)
FEW (n < 50) ZERO FEW (n < 5) ZERO FEW (n < 100) ZERO

BIGRU-LWAN (Chalkidis et al., 2019b) 61.7 - 14.3 - 73.6 -

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 51.0 33.5 15.0 31.5 9.9 20.8
DC-BIGRU-LWAN (new) 62.1 41.5 19.3 39.3 39.0 48.9

DN-BIGRU-LWAN (new) 52.2 23.8 10.0 22.3 20.4 27.2
DNC-BIGRU-LWAN (new) 62.0 39.3 23.8 33.6 41.6 47.6

GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 61.8 42.6 21.1 35.2 45.8 46.1
GNC-BIGRU-LWAN (new) 62.6 36.3 18.4 34.2 45.3 51.9

Table 3: Results (%) of experiments performed with zero-shot capable extensions of BIGRU-LWAN. All scores are

nDCG@K, with the same K values as in Table 1. Best results shown in bold. Best results in each zone shown

underlined. n is the number of training documents assigned with a label. Similar conclusions can be drawn when

evaluating with RP@K (See the appendix).

are severely truncated.12 To check the effect of

text truncation, we employed a hierarchical version

of SCI-BERT, dubbed HIER-SCI-BERT, similar to

the hierarchical BERT of Chalkidis et al. (2019a).13

This model encodes consecutive segments of text

(each up to 512 tokens) using a shared SCI-BERT

encoder, then applies max-pooling over the seg-

ment encodings to produce a final document repre-

sentation. HIER-SCI-BERT outperforms SCI-BERT,

confirming that truncation is an important issue, but

it still performs worse than ATTENTION-XML. We

believe that a hierarchical BERT model pre-trained

from scratch on biomedical corpora, especially dis-

charge summaries, with a new BPE vocabulary, may

perform even better in future experiments.

5.2 Zero-shot Learning

In Table 1 we intentionally omitted zero-shot la-

bels, as the methods discussed so far, except GC-

BIGRU-LWAN, are incapable of zero-shot learning.

In general, any model that relies solely on trainable

vectors to represent labels cannot cope with unseen

labels, as it eventually learns to ignore unseen la-

bels, i.e., it assigns them near-zero probabilities. In

this section, we discuss the results of the zero-shot

capable extensions of BIGRU-LWAN (Section 3.5).

In line with the experiments of Rios and Kavu-

luru (2018), Table 3 shows that GC-BIGRU-LWAN

(with GCNs) performs better than C-BIGRU-LWAN

in zero-shot labels on all three datasets. These two

zero-shot capable extensions of BIGRU-LWAN also

obtain better few-shot results on MIMIC-III com-

paring to BIGRU-LWAN; GC-BIGRU-LWAN is also

comparable to BIGRU-LWAN in few-shot learning

12In BPEs, the average document length is approx. 2.1k, as
many biomedical terms are over-fragmented, thus only the 1/4
of the document actually fit in practice in BERT-based models.

13This model is ‘hierarchical’ in the sense that a first layer
encodes paragraphs, then another layer combines the repre-
sentations of paragraphs (Yang et al., 2016). It does not use
the label hierarchy.

on EURLEX57K, but BIGRU-LWAN is much better

than its two zero-shot extensions on AMAZON13K.

The superior performance of BIGRU-LWAN on EU-

RLEX57K and AMAZON13K, compared to MIMIC-

III, is due to the fact that in the first two datasets

few-shot labels are more frequent (n ≤ 50, and

n ≤ 100, respectively) than in MIMIC-III (n ≤ 5).

Are graph convolutions a key factor? It is un-

clear if the gains of GC-BIGRU-LWAN are due to

the GCN encoder of the label hierarchy, or the in-

creased depth of GC-BIGRU-LWAN compared to

C-BIGRU-LWAN. Table 3 shows that DC-BIGRU-

LWAN is competitive to GC-BIGRU-LWAN, indicat-

ing that the latter benefits mostly from its increased

depth, and to a smaller extent from its awareness

of the label hierarchy. This motivated us to search

for alternative ways to exploit the label hierarchy.

Alternatives in exploiting label hierarchy: Ta-

ble 3 shows that DN-BIGRU-LWAN, which replaces

the centroids of token embeddings of the label de-

scriptors of DC-BIGRU-LWAN with label embed-

dings produced by the NODE2VEC extension, is

actually inferior to DC-BIGRU-LWAN. In turn, this

suggests that although the NODE2VEC extension

we employed aims to encode both topological infor-

mation from the hierarchy and information from the

label descriptors, the centroids of word embeddings

still capture information from the label descriptors

that the NODE2VEC extension misses. This also

indicates that exploiting the information from the

label descriptors is probably more important than

the topological information of the label hierarchy

for few and zero-shot learning generalization.

DNC-BIGRU-LWAN, which combines the cen-

troids with the label embeddings of the NODE2VEC

extension, is comparable to DC-BIGRU-LWAN,

while being better overall in few-shot labels. Com-

bining the GCN encoder and the NODE2VEC ex-

tension (GNC-BIGRU-LWAN) leads to a large im-



provement in zero-shot labels (46.1% to 51.9%

nDCG@K) on AMAZON13K. On EURLEX57K,

however, the original GC-BIGRU-LWAN still has

the best zero-shot results; and on MIMIC-III, the

best zero-shot results are obtained by the hierarchy-

unaware DC-BIGRU-LWAN. These mixed findings

seem related to the GAP of each dataset (Fig. 1).

The role of graph-aware annotation proximity:

When gold label assignments are dense, neighbour-

ing labels co-occur more frequently, thus models

can leverage topological information and learn how

to better cope with neighbouring labels, which is

what both GCNs and NODE2VEC do. The denser

the gold label assignments, the more we can rely

on more distant neighbours, and the better it be-

comes to include graph embedding methods that

conflate larger neighbourhoods, like NODE2VEC

(included in GNC-BIGRU-LWAN) on AMAZON13K

(GAP 0.86), when predicting unseen labels.

For medium proximity gold label assignments,

as in EURLEX57K (GAP 0.45), it seems preferable

to rely on closer neighbours only; hence, it is better

to use only graph encoders that conflate smaller

neighbourhoods, like the GCNs which apply convo-

lution filters to neighbours up to two hops away, as

in GC-BIGRU-LWAN (excl. NODE2VEC extension).

When label assignments are sparse, as in MIMIC-

III (GAP 0.27), where only non-neighbouring leaf

labels are assigned in the same document, leverag-

ing the topological information (e.g., knowing that

a rare label shares an ancestor with a frequent one)

is not always helpful, which is why encoding the

label hierarchy shows no advantage in zero-shot

learning in MIMIC-III; however, it can still be use-

ful when we at least have few training instances, as

the few-shot results of MIMIC-III indicate.

Overall, we conclude that the GCN label hierarchy

encoder does not always improve LWANs in zero-

shot learning, compared to equally deep LWANs,

and that depending on the proximity of label assign-

ments (based on the label annotation guidelines) it

may be preferable to use additional or no hierarchy-

aware encodings for zero-shot learning.

6 Conclusions

We presented an extensive study of LMTC meth-

ods in three domains, to answer three understudied

questions on (1) the competitiveness of PLT-based

methods against neural models, (2) the use of the

label hierarchy, (3) the benefits from transfer learn-

ing. A condensed summary of our findings is that

(1) TF-IDF PLT-based methods are definitely worth

considering, but are not always competitive, while

ATTENTION-XML, a neural PLT-based method that

captures word order, is robust across datasets; (2)

transfer learning leads to state-of-the-art results in

general, but BERT-based models can fail spectacu-

larly when documents are long and technical terms

get over-fragmented; (3) the best way to use the

label hierarchy in neural methods depends on the

proximity of the label assignments in each dataset.

An even shorter summary is that no single method

is best across all domains and label groups (all,

few, zero) as the language, the size of documents,

and the label assignment strongly vary with direct

implications in the performance of each method.

In future work, we would like to further inves-

tigate few and zero-shot learning in LMTC, espe-

cially in BERT models that are currently unable to

cope with zero-shot labels. It is also important to

shed more light on the poor performance of BERT

models in MIMIC-III and propose alternatives that

can cope both with long documents (Kitaev et al.,

2020; Beltagy et al., 2020) and domain-specific ter-

minology, reducing word over-fragmentation. Pre-

training BERT from scratch on discharge summaries

with a new BPE vocabulary is a possible solution.

Finally, we would like to combine PLTs with BERT,

similarly to ATTENTION-XML, but the computa-

tional cost of fine-tuning multiple BERT encoders,

one for each PLT node, would be massive, surpass-

ing the training cost of very large Transformer-

based models, like T5-3B (Raffel et al., 2019) and

MEGATRON-LM (Shoeybi et al., 2019) with billions

of parameters (30-100x the size of BERT-BASE).
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A Additional Implementation Details

All experiments were deployed in NVIDIA

GT1080TI GPU cards, in a single GPU fashion.

In Table 6, we report the size of the models and

the elapsed training time. Hyper-parameters were

tuned using HYPEROPT,14 selecting values with

the best loss on development data. Table 4 shows

the hyper-parameters search space and the selected

values. We use 200-D pretrained GLOVE embed-

dings (Pennington et al., 2014) for EURLEX57K

and AMAZON13K, and 200-D WORD2VEC embed-

dings pretrained on PUBMED
15 (McDonald et al.,

2018) for MIMIC-III. For BERT-based methods we

tuned only the learning rate, considering the values

{2e-5, 3e-5, 5e-5}, selecting 2e-5 for EURLEX57K

and AMAZON13K, and 5e-5 for MIMIC-III. Finally,

for PARABEL and BONSAI we tuned the n-gram

order in the range {1, 2, 3, 4, 5}, and the number

of n-gram features in the range {100k, 200k, 300k,

400k}. When n > 1 we use n-grams up to order

n, e.g. for n = 3 we use 1-grams, 2-grams and

3-grams. In all datasets the optimal values were

200k features for n = 5.

B BIGRUs vs. CNNs

Chalkidis et al. (2019b) showed that BIGRUs are

better encoders than CNNs in EURLEX57K. We

confirm these findings across all datasets (Table 5).

BIGRU-LWAN, C-BIGRU-LWAN and GC-BIGRU-

LWAN outperform CNN-LWAN, C-CNN-LWAN and

GC-CNN-LWAN by 3.5 to 16.5 percentage points.

C Additional Results

Table 7 shows RP@K results of the zero-shot ca-

pable methods. As with nDCG@K, we conclude

that the GCN label hierarchy encoder of Rios and

Kavuluru (2018) does not always improve LWANs

in zero-shot learning, compared to equally deep

LWANs, and that depending on the proximity of

label assignments, it may be preferable to use ad-

ditional or no encodings of the hierarchy for zero-

shot learning. Also, the zero-shot capable methods

outperform BIGRU-LWAN in all, frequent, and few

labels, but no method is consistently the best.
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15https://www.ncbi.nlm.nih.gov/pubmed/

https://dl.acm.org/citation.cfm?id=3185998
https://dl.acm.org/citation.cfm?id=3185998
https://dl.acm.org/citation.cfm?id=3185998
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://aclanthology.info/papers/D18-1352/d18-1352
https://aclanthology.info/papers/D18-1352/d18-1352
https://aclanthology.info/papers/D18-1352/d18-1352
https://arxiv.org/abs/2002.12327
https://arxiv.org/abs/2002.12327
https://www.aclweb.org/anthology/N19-5004/
https://www.aclweb.org/anthology/N19-5004/
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://doi.org/10.4018/jdwm.2007070101
https://aclanthology.info/papers/N16-1174/n16-1174
https://aclanthology.info/papers/N16-1174/n16-1174
https://arxiv.org/abs/1811.01727
https://arxiv.org/abs/1811.01727
https://arxiv.org/abs/1811.01727
https://arxiv.org/abs/1811.01727
http://papers.nips.cc/paper/8817-attentionxml-label-tree-based-attention-aware-deep-model-for-high-performance-extreme-multi-label-text-classification.pdf
http://papers.nips.cc/paper/8817-attentionxml-label-tree-based-attention-aware-deep-model-for-high-performance-extreme-multi-label-text-classification.pdf
http://papers.nips.cc/paper/8817-attentionxml-label-tree-based-attention-aware-deep-model-for-high-performance-extreme-multi-label-text-classification.pdf
http://papers.nips.cc/paper/8817-attentionxml-label-tree-based-attention-aware-deep-model-for-high-performance-extreme-multi-label-text-classification.pdf
https://github.com/hyperopt/hyperopt
https://www.ncbi.nlm.nih.gov/pubmed/


EURLEX57K

Search space Layers Units Dropout Word Dropout Batch Size

BASELINES [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

BIGRU-LWAN (Chalkidis et al., 2019b) 1 300 0.4 0 16

ZERO-SHOT [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 1 100 0.1 0.02 16
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 1 100 0.1 0 16
DC-BIGRU-LWAN (new) 1 100 0.1 0 16
DN-BIGRU-LWAN (new) 1 100 0.1 0 16
DNC-BIGRU-LWAN (new) 1 100 0.1 0 16
GNC-BIGRU-LWAN (new) 1 100 0.1 0.02 16

TRANSFER LEARNING [12] [768] [0.1, 0.2, 0.3] - [8, 16]

BERT-BASE (Devlin et al., 2019) 12 768 0.1 - 8
ROBERTA-BASE (Liu et al., 2019) 12 768 0.1 - 8
BERT-LWAN (new) 12 768 0.1 - 8

MIMIC-III

Search space Layers Units Dropout Word Dropout Batch Size

BASELINES [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

BIGRU-LWAN (Chalkidis et al., 2019b) 2 300 0.3 0 8

ZERO-SHOT [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 2 100 0.1 0 8
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 1 100 0.1 0 8
DC-BIGRU-LWAN (new) 1 100 0.1 0 8
DN-BIGRU-LWAN (new) 1 100 0.1 0 8
DNC-BIGRU-LWAN (new) 1 100 0.1 0 8
GNC-BIGRU-LWAN (new) 1 100 0.1 0 8

TRANSFER LEARNING [12] [768] [0.1, 0.2, 0.3] - [8, 16]

BERT-BASE (Devlin et al., 2019) 12 768 0.1 - 8
ROBERTA-BASE (Liu et al., 2019) 12 768 0.1 - 8
BERT-LWAN (new) 12 768 0.1 - 8

AMAZON

Search space Layers Units Dropout Word Dropout Batch Size

BASELINES [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

BIGRU-LWAN (Chalkidis et al., 2019b) 2 300 0.1 0 32

ZERO-SHOT [1, 2] [100, 200, 300, 400] [0.1, 0.2, 0.3] [0, 0.01, 0.02] [8, 16]

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 2 100 0.1 0 32
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 1 100 0.1 0 32
DC-BIGRU-LWAN (new) 2 100 0.1 0 32
DN-BIGRU-LWAN (new) 1 100 0.1 0 32
DNC-BIGRU-LWAN (new) 2 100 0.1 0 32
GNC-BIGRU-LWAN (new) 1 100 0.1 0 32

TRANSFER LEARNING [12] [768] [0.1, 0.2, 0.3] - [8, 16]

BERT-BASE (Devlin et al., 2019) 12 768 0.1 - 8
ROBERTA-BASE (Liu et al., 2019) 12 768 0.1 - 8
BERT-LWAN (ours) 12 768 0.1 - 8

Table 4: Hyper-parameter search space and best values chosen for all neural methods except BERT-based ones.



ALL LABELS FREQUENT FEW ZERO

RP@K nDCG@K RP@K nDCG@K RP@K nDCG@K RP@K nDCG@K

EURLEX57K (LAV G = 5.07,K = 5)

BIGRU-LWAN 77.1 80.1 81.0 82.4 65.6 61.7 - -
CNN-LWAN 71.7 74.6 76.1 77.3 61.1 55.1 - -

C-BIGRU-LWAN 72.0 75.6 76.9 78.7 55.7 51.0 46.1 33.5
C-CNN-LWAN 68.5 71.7 73.2 74.5 49.7 45.7 36.1 29.9

GC-BIGRU-LWAN 76.8 80.0 80.6 82.3 66.2 61.8 48.9 42.6
GC-CNN-LWAN 70.9 74.4 75.4 77.2 52.3 48.4 37.1 29.6

MIMIC-III (LAV G = 15.45,K = 15)

BIGRU-LWAN 66.2 70.1 66.8 70.6 21.7 14.3 - -
CNN-LWAN 60.5 64.3 61.1 64.7 16.3 10.2 - -

C-BIGRU-LWAN 60.2 64.9 60.9 65.3 26.9 15.0 52.6 31.5
C-CNN-LWAN 54.9 59.5 55.5 59.9 21.2 11.7 37.3 19.5

GC-BIGRU-LWAN 64.9 69.1 65.6 69.6 35.9 21.1 56.6 35.2
GC-CNN-LWAN 56.6 60.9 57.2 61.3 23.7 13.0 38.2 22.2

AMAZON13K (LAV G = 5.04,K = 5)

BIGRU-LWAN 83.9 85.4 84.9 86.1 80.0 73.6 - -
CNN-LWAN 77.1 79.1 78.2 79.7 70.4 63.6 - -

C-BIGRU-LWAN 64.6 68.2 67.2 70.3 13.8 9.9 29.9 20.8
C-CNN-LWAN 56.2 59.2 58.6 61.2 8.6 6.3 19.5 14.5

GC-BIGRU-LWAN 77.4 79.8 79.1 81.0 53.7 45.8 56.1 46.1
GC-CNN-LWAN 72.6 75.3 74.3 76.4 41.3 34.0 45.6 34.5

Table 5: Results (%) of experiments performed to compare GRU vs. CNN encoders. Best results in each zone shown

in bold. We show results for K close to the average number of labels LAVG.

Methods Parameters Trainable Parameter Train Time

BASELINES

BIGRU-LWAN (Chalkidis et al., 2019b) 86 6 14h

ZERO-SHOT

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 80.2 0.2 9.3h
GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 80.5 0.5 18.5h
DC-BIGRU-LWAN (new) 81.3 1.3 11.2h
DN-BIGRU-LWAN (new) 80.2 0.2 9.5h
DNC-BIGRU-LWAN (new) 81.6 1.6 10.1h
GNC-BIGRU-LWAN (new) 80.5 0.5 20.2h

TRANSFER LEARNING

BERT-BASE (Devlin et al., 2019) 110 110 9.5h
ROBERTA-BASE (Liu et al., 2019) 110 110 9.5h
BERT-LWAN (new) 119 119 11h

Table 6: Number of parameters (trainable or not) in millions and training time for a single run reported for all

examined methods.

EURLEX57K (K = 5) MIMIC-III (K = 15) AMAZON13K (K = 5)
FEW (n < 50) ZERO FEW (n < 5) ZERO FEW (n < 100) ZERO

BIGRU-LWAN (Chalkidis et al., 2019b) 65.6 - 21.7 - 80.0 -

C-BIGRU-LWAN (Rios and Kavuluru, 2018) 55.7 46.1 26.9 52.6 13.8 29.9
DC-BIGRU-LWAN (new) 66.8 53.9 33.6 63.9 47.0 57.1

DN-BIGRU-LWAN (new) 56.9 34.3 19.5 43.9 27.1 36.9
DNC-BIGRU-LWAN (new) 66.9 51.7 41.3 59.4 50.2 59.6

GC-BIGRU-LWAN (Rios and Kavuluru, 2018) 66.2 48.9 35.9 56.6 53.7 56.1
GNC-BIGRU-LWAN (new) 67.7 49.4 31.6 57.5 53.8 63.4

Table 7: Results (%) of experiments performed with zero-shot capable extensions of BIGRU-LWAN. All scores

are RP@K, with the same K values as in Table 1 of the main paper. Best results of zero-shot capable methods

(excluding BIGRU-LWAN) shown in bold. Best results in each zone shown underlined. n is the number of training

documents assigned with a label.


