19 research outputs found

    Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving?

    Get PDF
    Thevariabilityofthephytoplanktonbiomassderivedfromdailychlorophyll-a(Chl-a)satelliteimageswasinvestigated over the period 1998–2017 in the surface waters of the English Channel and the northern Bay of Biscay. Merged satellite (SeaWiFS-MODIS/Aqua-MERIS-VIIRS) Chl-a wascalculated using the OC5 Ifremeralgorithm which is optimized for moderately-turbid waters. The seasonal cycle in satellite-derived Chl-a was comparedwithinsitumeasurementsmadeatsevencoastalstationslocatedinthesouthernsideoftheEnglish ChannelandinthenorthernBayofBiscay.TheresultsfirstlyshowedthatthesatelliteChl-aproduct,derived from a suite of space-borne marine reflectance data, is in agreement with the coastal observations. For compliancewiththedirectivesoftheEuropeanUniononwaterquality,time-seriesof6-yearmovingaverageofChlawereassessedovertheregion.Acleardeclinewasobservedinthemeanand90thpercentileofChl-aatstations locatedinthemixedwatersoftheEnglishChannel.Thetime-seriesatthestationslocatedintheBayofBiscay showedyearlyfluctuationswhichcorrelatedwellwithriverdischarge,butnooverallChl-atrendwasobserved. IntheEnglishChannel,theshapeoftheseasonalcycleinChl-achangedovertime.Narrowerpeakswereobservedinspringattheendofthestudiedperiod,indicatinganearlierlimitationbynutrients.Monthlyaverages of satellite Chl-a, over theperiods 1998–2003and2012–2017,exhibitedspatial andtemporalpatternsin the evolutionofthephytoplanktonbiomasssimilartotheseobservedatthesevencoastalstations.Boththeinsitu andsatelliteChl-atimes-seriesshowedadecreaseinChl-aintheEnglishChannelinMay,JuneandJuly.This trendinphytoplanktonbiomassiscorrelatedwithlowerriverdischargesattheendoftheperiodandaconstant reduction in the riverine input of phosphorus through improvements in the water quality of the surrounding rivercatchments
    corecore