26 research outputs found
Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury
In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable--keratinocyte-derived--cytokine and growth factor milieu.
In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters.
Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß.
Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients
A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality
Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia
Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 106MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE
Epidermal Differentiation in Barrier Maintenance and Wound Healing
Significance: The epidermal barrier prevents water loss and serves as the body's first line of defense against toxins, chemicals, and infectious microbes. Disruption of the barrier, either through congenital disorders of barrier formation or through wounds, puts the individual at risk for dehydration, hypersensitivity, infection, and prolonged inflammation. Epidermal barrier disorders affect millions of patients in the United States, causing loss of productivity and diminished quality of life for patients and their families, and represent a burden to the health-care system and society. Recent Advances: The genetic basis of many congenital barrier disorders has been identified in recent years, and great advances have been made in the molecular mechanisms of the formation and homeostasis of epidermal barrier, as well as acute and chronic wound healing. Progress in stem cell (SC) biology, particularly in induced pluripotent stem cells (iPSCs) and allogeneic mesenchymal stem cells (MSCs), has opened new doors for cell-based therapy of chronic wounds. Critical Issues: Understanding of the molecular mechanisms of barrier homeostasis in health and disease, as well as contributions of iPSCs and allogeneic MSCs to wound healing, will lead to the identification of novel targets for developing therapeutics for congenital barrier and wound healing disorders. Future Directions: Future studies should focus on better understanding of molecular mechanisms leading to disrupted homeostasis of epidermal barrier to identify potential therapeutic targets to combat its associated diseases
Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars
In predisposed individuals, wound healing can lead to hypertrophic scar or keloid formation, characterized by an overabundant extracellular matrix. It has recently been shown that hypertrophic scars are accompanied by abnormal keratinocyte differentiation and proliferation, and significantly increased acanthosis, compared with normal scars. This study addressed the question of whether the development of normal and hypertrophic scars is regulated by differences in the growth factor profiles of both the epidermis and the dermis, The presence of interleukin-l alpha (IL-1 alpha), IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), platelet-derived growth factor (PDGF), transforming growth factor-beta1 (TGF-beta1), and basic fibroblast growth factor (bFGF) was investigated in biopsies taken from breast reduction scars at 3 and 12 months following surgery. The samples were analysed by immunohistological methods and categorized as scars that remained hypertrophic (HH), became normal (HN) or remained normal after 12 months (NN), The epidermal expression of IL-1 alpha was significantly increased in NN scars compared with HN and HH scars 3 and 12 months following operation, whereas the dermal expression showed no difference. PDGF was significantly increased in the dermis of normal scars after 3 months and in both the epidermis and the dermis of hypertrophic scars after 12 months. IL-1 beta, TNF-alpha, TGF-beta and bFGF showed no differences. It is hypothesized that impaired production of keratinocytederived growth factors, such as IL-1 alpha, leads to a decrease in the catabolism of the dermal matrix, whereas augmented epidermal PDGF production leads to increased formation of the dermal matrix in hypertrophic scars. These observations support the possibility that the epidermis is involved in preventing the formation of hypertrophic scars, Copyright (C) 2001 John Wiley & Sons, Ltd
Keratinocyte Migration, Proliferation, and Differentiation in Chronic Ulcers From Patients With Diabetes and Normal Wounds
Epithelialization of normal acute wounds occurs by an orderly series of events whereby keratinocytes migrate, proliferate, and differentiate to restore barrier function. The keratinocytes in the epidermis of chronic ulcers fail to execute this series of events. To better understand the epithelial dynamics of chronic ulcers, we used immunohistochemistry to evaluate proliferation, differentiation, adhesion, and migration in keratinocytes along the margin of chronic ulcers from patients with diabetes mellitus. We compared these features with keratinocytes from the migrating epithelial tongues of acute incisional and excisional wounds from normal volunteers. Keratinocytes at the chronic ulcer edge are highly proliferative (Ki67 proliferation marker), have an activated phenotype (K16), do not stain for keratins involved in epidermal differentiation (K10 and K2), and show a reduced expression of LM-3A32 (uncleaved, precursor of the α3 chain of laminin 5), a key molecule present on migrating epithelium. In contrast, keratinocytes in normal acute wound migrating epithelium do not express the proliferation marker Ki67 but do express K10, K2, and LM-3A32. A better understanding of molecular mechanisms involved in keratinocyte migration may lead to molecular targets for therapies for impaired wound healing. (J Histochem Cytochem 56:687–696, 2008