1,299 research outputs found

    Systems with Higher-Order Shape Invariance: Spectral and Algebraic Properties

    Get PDF
    We study a complex intertwining relation of second order for Schroedinger operators and construct third order symmetry operators for them. A modification of this approach leads to a higher order shape invariance. We analyze with particular attention irreducible second order Darboux transformations which together with the first order act as building blocks. For the third order shape-invariance irreducible Darboux transformations entail only one sequence of equidistant levels while for the reducible case the structure consists of up to three infinite sequences of equidistant levels and, in some cases, singlets or doublets of isolated levels.Comment: 18 pages, LaTeX, editorial page is remove

    Factorization of non-linear supersymmetry in one-dimensional Quantum Mechanics. II: proofs of theorems on reducibility

    Full text link
    In this paper, we continue to study factorization of supersymmetric (SUSY) transformations in one-dimensional Quantum Mechanics into chains of elementary Darboux transformations with nonsingular coefficients. We define the class of potentials that are invariant under the Darboux - Crum transformations and prove a number of lemmas and theorems substantiating the formulated formerly conjectures on reducibility of differential operators for spectral equivalence transformations. Analysis of the general case is performed with all the necessary proofs.Comment: 13 page

    Classical Integrable 2-dim Models Inspired by SUSY Quantum Mechanics

    Full text link
    A class of integrable 2-dim classical systems with integrals of motion of fourth order in momenta is obtained from the quantum analogues with the help of deformed SUSY algebra. With similar technique a new class of potentials connected with Lax method is found which provides the integrability of corresponding 2-dim hamiltonian systems. In addition, some integrable 2-dim systems with potentials expressed in elliptic functions are explored.Comment: 19 pages, LaTeX, final version to be published in J.Phys.

    New Two-Dimensional Quantum Models Partially Solvable by Supersymmetrical Approach

    Full text link
    New solutions for second-order intertwining relations in two-dimensional SUSY QM are found via the repeated use of the first order supersymmetrical transformations with intermediate constant unitary rotation. Potentials obtained by this method - two-dimensional generalized P\"oschl-Teller potentials - appear to be shape-invariant. The recently proposed method of SUSYSUSY-separation of variables is implemented to obtain a part of their spectra, including the ground state. Explicit expressions for energy eigenvalues and corresponding normalizable eigenfunctions are given in analytic form. Intertwining relations of higher orders are discussed.Comment: 21 pages. Some typos corrected; imrovements added in Subsect.4.2; some references adde

    Intertwining relations of non-stationary Schr\"odinger operators

    Get PDF
    General first- and higher-order intertwining relations between non-stationary one-dimensional Schr\"odinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in a RR-separation of variables. The Fokker-Planck and diffusion equation are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.Comment: 18 pages, LaTeX20

    Spectral Action from Anomalies

    Full text link
    Starting from a theory of fermions moving in a fixed gauge and gravitational background we implement the scale invariance of the theory. Upon quantization the theory is anomalous but the anomaly can be cancelled by the addition of another term to the action. This term comes out to be basically the Chamseddine Connes spectral action introduced in the context of noncommutative geometry. An alternative realization of the dilaton may involve a collective scalar mode of all fermions accumulated in a {scale-noninvariant} dilaton action. The entire spectral action describes gauge and Higgs fields coupled with gravity. Here this action is coupled with a dilaton and we discuss how it relates to the transition from the radiation to the electroweak broken phase via condensation of Higgs fields.Comment: Proceedings of the Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field Theory and Gravity, September 8-12, 2010 Corfu Greec

    Higher Order Matrix SUSY Transformations in Two-Dimensional Quantum Mechanics

    Full text link
    The iteration procedure of supersymmetric transformations for the two-dimensional Schroedinger operator is implemented by means of the matrix form of factorization in terms of matrix 2x2 supercharges. Two different types of iterations are investigated in detail. The particular case of diagonal initial Hamiltonian is considered, and the existence of solutions is demonstrated. Explicit examples illustrate the construction.Comment: 15

    Matching meson resonances to OPE in QCD

    Full text link
    We investigate the possible corrections to the linear Regge trajectories for the light-quark meson sector by matching two-point correlators of quark currents to the Operator Product Expansion. We find that the allowed modifications to the linear behavior must decrease rapidly with the principal quantum number. After fitting the lightest states in each channel and certain low-energy constants the whole spectrum for meson masses and residues is obtained in a satisfactory agreement with phenomenology. The perturbative corrections to our results are discussed.Comment: 4 pages, talk given at the First Workshop on Quark Hadron Duality and the Transition to pQCD (June 2005, Frascati, Italy) and at the International Conference on QCD and Hadronic Physics (June 2005, Beijing, China

    Matrix Hamiltonians: SUSY approach to hidden symmetries

    Get PDF
    A new supersymmetric approach to the analysis of dynamical symmetries for matrix quantum systems is presented. Contrary to standard one dimensional quantum mechanics where there is no role for an additional symmetry due to nondegeneracy, matrix hamiltonians allow for non-trivial residual symmetries. This approach is based on a generalization of the intertwining relations familiar in SUSY Quantum Mechanics. The corresponding matrix supercharges, of first or of second order in derivatives, lead to an algebra which incorporates an additional block diagonal differential matrix operator (referred to as a "hidden" symmetry operator) found to commute with the superhamiltonian. We discuss some physical interpretations of such dynamical systems in terms of spin 1/2 particle in a magnetic field or in terms of coupled channel problem. Particular attention is paid to the case of transparent matrix potentials.Comment: 20 pages, LaTe
    corecore