20 research outputs found

    Spin-Orbitronics a Novel Trend in Spin Oriented Electronics

    Get PDF
    Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices.Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices

    Anomalous polarization conversion in arrays of ultrathin ferromagnetic nanowires

    Full text link
    We study optical properties of arrays of ultrathin nanowires by means of the Brillouin scattering of light on magnons. We employ the Stokes/anti-Stokes scattering asymmetry to probe the circular polarization of a local electric field induced inside nanowires by linearly polarized light waves. We observe the anomalous polarization conversion of the opposite sign than that in a bulk medium or thick nanowires with a great enhancement of the degree of circular polarization attributed to an unconventional refraction in the nanowire medium.Comment: 5 pages, 4 figure

    Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures

    Full text link
    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometer size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetisation at the nanoscale. To date, chiral skyrmion structures have been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films and under external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero applied magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral N\'eel internal structure which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.Comment: Submitted version. Extended version to appear in Nature Nanotechnolog

    INTERACTION OF OPTICAL RADIATION WITH SPIN WAVES IN FERROMAGNETIC FILMS

    No full text
    The theoretical analysis on the base of modern analytical methods has been held as well as the numerical analysis with programming in FORTRAN and ALGOL languages, the experiment with the application of integral-optical methodologies. As a result regimes and geometries of the light interaction with dipole and dipole-exchange spin waves in ferromagnetic films have been investigated. The prototype of a magnetooptical spectrum analyzer of SHF-range has been created. The technology of the creation of optical diffraction grids in integral magnetooptics has been suggestedAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Spin-Orbitronics a Novel Trend in Spin Oriented Electronics

    Get PDF
    Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices

    Theoretical Investigation of Skyrmion Dynamics in Pt/Co/MgO Nanodots

    No full text
    In this article, we present a numerical study on stabilization and eigenmodes of the so-called skyrmion chiral spin texture in nanometric dots. The first aim of this study is to identify the appropriate multilayer in a set of Pt/Co/MgO structures with different Co thicknesses that have been previously experimentally characterized. Stabilization occurs if the energy favoring skyrmions is greater than the geometric mean of the exchange and anisotropy energies. Both the energy favoring skyrmions and the anisotropy contribution depend on the Co thickness. The appropriate multilayer is obtained for a specific Co thickness. MuMax simulations are used to calculate the precise static magnetization configuration for the experimental parameters, allowing us select the appropriate structure. Moreover, in view of experimental study of skyrmion dynamics by means of Brillouin light scattering, the eigenfrequency, eigenmode profile, and spectral density are calculated for different dot sizes. Finally, the optimal dot size that allows for a feasible experiment is obtained
    corecore