9 research outputs found

    Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He

    Full text link
    The kinetics of HCP-BCC structure phase transition is studied by precise pressure measurement technique in 4He crystals of different quality. An anomalous pressure behavior in bad quality crystals under constant volume conditions is detected just after HCP-BCC structure phase transition. A sharp pressure drop of 0.2 bar was observed at constant temperature. The subsequent pressure kinetics is a non-monotonic temperature function. The effect observed can be explained if we suppose that microscopic liquid droplets appear on the HCP-BCC interphase region in bad quality crystals. After the interphase region disappearance, these droplets are crystallized with pressure reduction. It is shown that this effect is absent in high quality thermal-treated crystals.Comment: 4 pages, 4 figure

    Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage

    Get PDF
    Advantages and diagnostic effectiveness of the two most widely used resequencing approaches, whole exome (WES) and whole genome (WGS) sequencing, are often debated. WES dominated large-scale resequencing projects because of lower cost and easier data storage and processing. Rapid development of 3(rd) generation sequencing methods and novel exome sequencing kits predicate the need for a robust statistical framework allowing informative and easy performance comparison of the emerging methods. In our study we developed a set of statistical tools to systematically assess coverage of coding regions provided by several modern WES platforms, as well as PCR-free WGS. We identified a substantial problem in most previously published comparisons which did not account for mappability limitations of short reads. Using regression analysis and simple machine learning, as well as several novel metrics of coverage evenness, we analyzed the contribution from the major determinants of CDS coverage. Contrary to a common view, most of the observed bias in modern WES stems from mappability limitations of short reads and exome probe design rather than sequence composition. We also identified the similar to 500kb region of human exome that could not be effectively characterized using short read technology and should receive special attention during variant analysis. Using our novel metrics of sequencing coverage, we identified main determinants of WES and WGS performance. Overall, our study points out avenues for improvement of enrichment-based methods and development of novel approaches that would maximize variant discovery at optimal cost

    Genome-wide sequence analyses of ethnic populations across Russia

    Get PDF
    The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country

    Identification of Novel Candidate Markers of Type 2 Diabetes and Obesity in Russia by Exome Sequencing with a Limited Sample Size

    Get PDF
    Type 2 diabetes (T2D) and obesity are common chronic disorders with multifactorial etiology. In our study, we performed an exome sequencing analysis of 110 patients of Russian ethnicity together with a multi-perspective approach based on biologically meaningful filtering criteria to detect novel candidate variants and loci for T2D and obesity. We have identified several known single nucleotide polymorphisms (SNPs) as markers for obesity (rs11960429), T2D (rs9379084, rs1126930), and body mass index (BMI) (rs11553746, rs1956549 and rs7195386) (p < 0.05). We show that a method based on scoring of case-specific variants together with selection of protein-altering variants can allow for the interrogation of novel and known candidate markers of T2D and obesity in small samples. Using this method, we identified rs328 in LPL (p = 0.023), rs11863726 in HBQ1 (p = 8 × 10−5), rs112984085 in VAV3 (p = 4.8 × 10−4) for T2D and obesity, rs6271 in DBH (p = 0.043), rs62618693 in QSER1 (p = 0.021), rs61758785 in RAD51B (p = 1.7 × 10−4), rs34042554 in PCDHA1 (p = 1 × 10−4), and rs144183813 in PLEKHA5 (p = 1.7 × 10−4) for obesity; and rs9379084 in RREB1 (p = 0.042), rs2233984 in C6orf15 (p = 0.030), rs61737764 in ITGB6 (p = 0.035), rs17801742 in COL2A1 (p = 8.5 × 10−5), and rs685523 in ADAMTS13 (p = 1 × 10−6) for T2D as important susceptibility loci in Russian population. Our results demonstrate the effectiveness of whole exome sequencing (WES) technologies for searching for novel markers of multifactorial diseases in cohorts of limited size in poorly studied populations

    Transcriptome of the bivalve Limecola balthica L. from Western Pacific: a new resource for studies of European populations.

    No full text
    The Baltic clam Limecola balthica L. (Tellinidae) is broadly used in ecophysiological, toxicological, evolutionary and environmental monitoring studies. However, it is poorly studied in respect of genome and gene functions. We obtained a transcriptome of Limecola b. balthica from Kamchatka (Western Pacific) generated with the use of Illumina high-throughput sequencing. We annotated 11,374 proteins, including 53 from the oxidative phosphorylation pathway and a number of pollution-stress biomarkers, recovered 254,540 single nucleotide variants within two annotated transcriptomes including 25,330 scorable in the previously published European data. Our results confirmed the available allozyme data indicating that nuclear genomes of the clams from the Baltic Sea were intermediate in their genetic composition between the Pacific (L. b. balthica) and the Atlantic (L. b. rubra) subspecies. At the same time, the mitochondrial genomes of Limecola from Kamchatka were nearly identical to the single published genome from the Baltic. The genomic diversity in Limecola was found to be high and comparable with that of other marine mollusks (0.0138 and 0.0142 heterozygous positions in the two studied transcriptomes). The data obtained in our study are a valuable resource for further development of genomic markers for evolutionary genetic and ecophysiological studies of L. balthica complex

    RNA Sequencing of Whole Blood Defines the Signature of High Intensity Exercise at Altitude in Elite Speed Skaters

    Get PDF
    Although high altitude training has been increasingly popular among endurance athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define the underlying physiological changes and screen for potential biomarkers of adaptation using transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the 18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating bout was used to measure gene expression changes associated with exercise. In order to identify the genes specifically regulated at high altitudes, we have leveraged the data from eight previously published microarray datasets studying blood expression changes after exercise at sea level. Using cell type-specific signatures, we were able to deconvolute changes of cell type abundance from individual gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker of intense exercise. Publicly available data from both single cell atlases and exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of physiological changes in an athlete’s body

    Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia

    No full text
    Abstract Background Allele frequency data from large exome and genome aggregation projects such as the Genome Aggregation Database (gnomAD) are of ultimate importance to the interpretation of medical resequencing data. However, allele frequencies might significantly differ in poorly studied populations that are underrepresented in large‐scale projects, such as the Russian population. Methods In this work, we leveraged our access to a large dataset of 694 exome samples to analyze genetic variation in the Northwest Russia. We compared the spectrum of genetic variants to the dbSNP build 151, and made estimates of ClinVar‐based autosomal recessive (AR) disease allele prevalence as compared to gnomAD r. 2.1. Results An estimated 9.3% of discovered variants were not present in dbSNP. We report statistically significant overrepresentation of pathogenic variants for several Mendelian disorders, including phenylketonuria (PAH, rs5030858), Wilson's disease (ATP7B, rs76151636), factor VII deficiency (F7, rs36209567), kyphoscoliosis type of Ehlers‐Danlos syndrome (FKBP14, rs542489955), and several other recessive pathologies. We also make primary estimates of monogenic disease incidence in the population, with retinal dystrophy, cystic fibrosis, and phenylketonuria being the most frequent AR pathologies. Conclusion Our observations demonstrate the utility of population‐specific allele frequency data to the diagnosis of monogenic disorders using high‐throughput technologies

    Identification of Genetic Risk Factors of Severe COVID-19 Using Extensive Phenotypic Data: A Proof-of-Concept Study in a Cohort of Russian Patients

    No full text
    The COVID-19 pandemic has drawn the attention of many researchers to the interaction between pathogen and host genomes. Over the last two years, numerous studies have been conducted to identify the genetic risk factors that predict COVID-19 severity and outcome. However, such an analysis might be complicated in cohorts of limited size and/or in case of limited breadth of genome coverage. In this work, we tried to circumvent these challenges by searching for candidate genes and genetic variants associated with a variety of quantitative and binary traits in a cohort of 840 COVID-19 patients from Russia. While we found no gene- or pathway-level associations with the disease severity and outcome, we discovered eleven independent candidate loci associated with quantitative traits in COVID-19 patients. Out of these, the most significant associations correspond to rs1651553 in MYH14p = 1.4 × 10−7), rs11243705 in SETX (p = 8.2 × 10−6), and rs16885 in ATXN1 (p = 1.3 × 10−5). One of the identified variants, rs33985936 in SCN11A, was successfully replicated in an independent study, and three of the variants were found to be associated with blood-related quantitative traits according to the UK Biobank data (rs33985936 in SCN11A, rs16885 in ATXN1, and rs4747194 in CDH23). Moreover, we show that a risk score based on these variants can predict the severity and outcome of hospitalization in our cohort of patients. Given these findings, we believe that our work may serve as proof-of-concept study demonstrating the utility of quantitative traits and extensive phenotyping for identification of genetic risk factors of severe COVID-19
    corecore