24 research outputs found
Modern Integrated Associations: Comparative Analysis Of Economic Growth Factors
The article presents the results of a research aimed at the explanation and evaluation of the factors of economic growth of regional integrated associations and the national economies of their member countries. The authors determine that these factors are foreign trade, mutual balance of trade and domestic demand. The novelty of the methodology used by the authors is that, unlike the traditional method where the assessment of the growth factors of integrative associations and their member states is based on the comparison of two components: external and domestic demand, this method breaks external demand into two components: first part is net exports (the difference between export and import, which is the component of aggregate demand) of goods within the integrative association, i.e., net exports of mutual trade; the second is net exports of foreign trade beyond the integrative association. The target of the research included seven most famous regional integrative associations that emerged at different times and are currently undergoing different stages in their development: the European Union, the North American Free Trade Area, the Association of Southeast Asian Nations, the South American Common Market, Asia-Pacific Economic Cooperation, as well as members of Eurasian integration — the Customs Union and the Common Economic Space, which on January 1, 2015 transformed into the Eurasian Economic Union. The authors come to the conclusion that integration develops successfully only in the context of the growth of the national economies of the member countries. The economies undergoing a crisis have to invest more efforts into dealing with domestic problems than in solving the issues related to integration
X-ray polarimetry of the accreting pulsar GX 301-2
The phase- and energy-resolved polarization measurements of accreting X-ray
pulsars (XRPs) allow us to test different theoretical models of their emission,
as well as to provide an avenue to determine the emission region geometry. We
present the results of the observations of the XRP GX 301-2 performed with the
Imaging X-ray Polarimetry Explorer (IXPE). GX 301-2 is a persistent XRP with
one of the longest known spin periods of ~680 s. A massive hyper-giant
companion star Wray 977 supplies mass to the neutron star via powerful stellar
winds. We do not detect significant polarization in the phase-averaged data
using spectro-polarimetric analysis, with the upper limit on the polarization
degree (PD) of 2.3% (99% confidence level). Using the phase-resolved
spectro-polarimetric analysis we get a significant detection of polarization
(above 99% c.l.) in two out of nine phase bins and marginal detection in three
bins, with a PD ranging between ~3% and ~10%, and a polarization angle varying
in a very wide range from ~0 deg to ~160 deg. Using the rotating vector model
we obtain constraints on the pulsar geometry using both phase-binned and
unbinned analysis getting excellent agreement. Finally, we discuss possible
reasons for a low observed polarization in GX 301-2.Comment: 10 pages, 10 figures, submitted to A&
A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375
Accreting X-ray pulsars (XRPs) are presumably ideal targets for polarization
measurements, as their high magnetic field strength is expected to polarize the
emission up to a polarization degree of ~80%. However, such expectations are
being challenged by recent observations of XRPs with the Imaging X-ray
Polarimeter Explorer (IXPE). Here we report on the results of yet another XRP,
EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT
and SRG/ART-XC. In line with recent results obtained with IXPE for similar
sources, analysis of the EXO 2030+375 data returns a low polarization degree of
0%-3% in the phase-averaged study and variation in the range 2%-7% in the
phase-resolved study. Using the rotating vector model we constrain the geometry
of the system and obtain a value for the magnetic obliquity of ~.
Considering also the estimated pulsar inclination of ~, this
indicates that the magnetic axis swings close to the observer line of sight.
Our joint polarimetric, spectral and timing analysis hint to a complex
accreting geometry where magnetic multipoles with asymmetric topology and
gravitational light bending significantly affect the observed source behavior.Comment: A&A accepted. Proofs versio
Polarized blazar X-rays imply particle acceleration in shocks
Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock
The first X-ray polarimetric observation of the black hole binary LMC X-1
We report on an X-ray polarimetric observation of the high-mass X-ray binary
LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry
Explorer (IXPE) in October 2022. The measured polarization is below the minimum
detectable polarization of 1.1 per cent (at the 99 per cent confidence level).
Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC
instruments, which enabled spectral decomposition into a dominant thermal
component and a Comptonized one. The low 2-8 keV polarization of the source did
not allow for strong constraints on the black-hole spin and inclination of the
accretion disc. However, if the orbital inclination of about 36 degrees is
assumed, then the upper limit is consistent with predictions for pure thermal
emission from geometrically thin and optically thick discs. Assuming the
polarization degree of the Comptonization component to be 0, 4, or 10 per cent,
and oriented perpendicular to the polarization of the disc emission (in turn
assumed to be perpendicular to the large scale ionization cone orientation
detected in the optical band), an upper limit to the polarization of the disc
emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per
cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA
X-ray Polarization Observations of BL Lacertae
Blazars are a class of jet-dominated active galactic nuclei with a typical
double-humped spectral energy distribution. It is of common consensus the
Synchrotron emission to be responsible for the low frequency peak, while the
origin of the high frequency hump is still debated. The analysis of X-rays and
their polarization can provide a valuable tool to understand the physical
mechanisms responsible for the origin of high-energy emission of blazars. We
report the first observations of BL Lacertae performed with the Imaging X-ray
Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization
degree 12.6\% was found in the 2-8 keV band. We contemporaneously
measured the polarization in radio, infrared, and optical wavelengths. Our
multiwavelength polarization analysis disfavors a significant contribution of
proton synchrotron radiation to the X-ray emission at these epochs. Instead, it
supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ
Discovery of X-ray polarization angle rotation in active galaxy Mrk 421
The magnetic field conditions in astrophysical relativistic jets can be
probed by multiwavelength polarimetry, which has been recently extended to
X-rays. For example, one can track how the magnetic field changes in the flow
of the radiating particles by observing rotations of the electric vector
position angle . Here we report the discovery of a
rotation in the X-ray band in the blazar Mrk 421 at an average flux state.
Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of
4-6 and 7-9 June 2022, rotated in total by .
Over the two respective date ranges, we find constant, within uncertainties,
rotation rates ( and ) and polarization
degrees (). Simulations of a random walk of the
polarization vector indicate that it is unlikely that such rotation(s) are
produced by a stochastic process. The X-ray emitting site does not completely
overlap the radio/infrared/optical emission sites, as no similar rotation of
was observed in quasi-simultaneous data at longer wavelengths. We
propose that the observed rotation was caused by a helical magnetic structure
in the jet, illuminated in the X-rays by a localized shock propagating along
this helix. The optically emitting region likely lies in a sheath surrounding
an inner spine where the X-ray radiation is released
Reactive sintering of highly-doped YAG/Nd3+ :YAG/YAG composite ceramics
Multilayer YAG/Nd3+:YAG/YAG composite laser ceramics were obtained by the reactive sintering in vacuum. The effect of the neodymium ion concentration (1–4 at.%) on the formation of defects and optical quality of composite ceramics was studied. It was found that neodymium ions modify densification kinetics during solid-state reactive sintering of the highly-doped Nd3+:YAG ceramics by decreasing shrinkage rate in the temperature range 1320–1350 °C. Differences in phase transformation kinetics during reactive sintering lead to generation of pores at the interface of adjacent layers which decrease the optical homogeneity of fabricated YAG/Nd3+:YAG/YAG composite ceramics. The influence of layered structure on the laser performance of optical ceramics was investigated. It was shown that the ceramics with multilayer composite architecture have slope efficiency almost twice as the single-layer ceramics with the same composition (22% and 12.5%, respectively)