11 research outputs found

    Can Cephalopods Vomit? Hypothesis Based on a Review of Circumstantial Evidence and Preliminary Experimental Observations

    No full text
    In representative species of all vertebrate classes, the oral ejection of upper digestive tract contents by vomiting or regurgitation is used to void food contaminated with toxins or containing indigestible material not voidable in the feces. Vomiting or regurgitation has been reported in a number of invertebrate marine species (Exaiptasia diaphana, Cancer productus, and Pleurobranchaea californica), prompting consideration of whether cephalopods have this capability. This “hypothesis and theory” paper reviews four lines of supporting evidence: (1) the mollusk P. californica sharing some digestive tract morphological and innervation similarities with Octopus vulgaris is able to vomit or regurgitate with the mechanisms well characterized, providing an example of motor program switching; (2) a rationale for vomiting or regurgitation in cephalopods based upon the potential requirement to void indigestible material, which may cause damage and ejection of toxin contaminated food; (3) anecdotal reports (including from the literature) of vomiting- or regurgitation-like behavior in several species of cephalopod (Sepia officinalis, Sepioteuthis sepioidea, O. vulgaris, and Enteroctopus dofleini); and (4) anatomical and physiological studies indicating that ejection of gastric/crop contents via the buccal cavity is a theoretical possibility by retroperistalsis in the upper digestive tract (esophagus, crop, and stomach). We have not identified any publications refuting our hypothesis, so a balanced review is not possible. Overall, the evidence presented is circumstantial, so experiments adapting current methodology (e.g., research community survey, in vitro studies of motility, and analysis of indigestible gut contents and feces) are described to obtain additional evidence to either support or refute our hypothesis. We recognize the possibility that further research may not support the hypothesis; therefore, we consider how cephalopods may protect themselves against ingestion of toxic food by external chemodetection prior to ingestion and digestive gland detoxification post-ingestion. Reviewing the evidence for the hypothesis has identified a number of gaps in knowledge of the anatomy (e.g., the presence of sphincters) and physiology (e.g., the fate of indigestible food residues, pH of digestive secretions, sensory innervation, and digestive gland detoxification mechanisms) of the digestive tract as well as a paucity of recent studies on the role of epithelial chemoreceptors in prey identification and food intakeOCTOMICSAcuicultura del pulpo común: hacia una producción exitosa mediante la interacción de estudios nutrigenómicos y epigenético

    Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review

    No full text
    For the first time, European Union legislation on animal research and testing has extended its scope to include invertebrate species the Class Cephalopoda. EU Directive 2010/63/EU, which was due to be implemented in Member States 1 January 2013, covers all "live cephalopods" used in scientific procedures that are likely to cause the animals adverse effects such as "pain, suffering, distress or lasting harm".This paper examines practical implications of the new EU law for cephalopod research. It evolved from a meeting of European cephalopod researchers held in Naples in 2011 (EuroCeph), which in turn was stimulated by discussions within The Boyd Group (a UK forum on animal experiments). This paper:1. describes key requirements of Directive 2010/63/EU;2. explains the project evaluation process that all regulated scientific projects involving animals must undergo before they can be authorised within Member States;3. presents a series of hypothetical case studies, to illustrate how, in practice, the principles for project evaluation might be applied in cephalopod research and testing;4. highlights the need for widely agreed guidance specific to cephalopods, to assist regulators, establishments and researchers in implementing the new law; and5. concludes with a list of practical steps that researchers might take to ensure compliance with the Directive in the national legislation of all EU Member States
    corecore