27,147 research outputs found
Inverter ratio failure detector
A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship
Quantum channels in nonlinear optical processes
Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear optical processes. The treatment elicits the detailed role and interplay of specific quantum channels, information that is not afforded by other methods. Following an illustrative application to the case of Rayleigh scattering, the method is applied to second and third harmonic generation. Derivations are given of parameters that quantify the various quantum channels and their interferences; the results are illustrated graphically. With given examples, it is shown in some systems that optical nonlinearity owes its origin to an isolated channel, or a small group of channels. © 2009 World Scientific Publishing Company
Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation
SM(2,4k) fermionic characters and restricted jagged partitions
A derivation of the basis of states for the superconformal minimal
models is presented. It relies on a general hypothesis concerning the role of
the null field of dimension . The basis is expressed solely in terms of
modes and it takes the form of simple exclusion conditions (being thus a
quasi-particle-type basis). Its elements are in correspondence with
-restricted jagged partitions. The generating functions of the latter
provide novel fermionic forms for the characters of the irreducible
representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page
Alignment of Rods and Partition of Integers
We study dynamical ordering of rods. In this process, rod alignment via
pairwise interactions competes with diffusive wiggling. Under strong diffusion,
the system is disordered, but at weak diffusion, the system is ordered. We
present an exact steady-state solution for the nonlinear and nonlocal kinetic
theory of this process. We find the Fourier transform as a function of the
order parameter, and show that Fourier modes decay exponentially with the wave
number. We also obtain the order parameter in terms of the diffusion constant.
This solution is obtained using iterated partitions of the integer numbers.Comment: 6 pages, 4 figure
A photonic basis for deriving nonlinear optical response
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as coefficients in a power series - nonlinear optical susceptibilities signifying a propensity to generate optical harmonics, for example. Taking the subject to a deeper level requires a more detailed knowledge of the structure and properties of each nonlinear susceptibility tensor, the latter differing in form according to the process under investigation. Typically, the derivations involve intricate development based on time-dependent perturbation theory, assisted by recourse to a set of Feynman diagrams. This paper presents a more direct route to the required results, based on photonic rather than semiclassical principles, and offers a significantly clearer perspective on the photophysics underlying nonlinear optical response. The method, here illustrated by specific application to harmonic generation and down-conversion processes, is simple, intuitive and readily amenable for processes of arbitrary photonic order. © 2009 IOP Publishing Ltd
- …