27,651 research outputs found

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics

    The Dust Properties of Eight Debris Disk Candidates as Determined by Submillimeter Photometry

    Full text link
    The nature of far-infrared dust emission toward main sequence stars, whether interstellar or circumstellar, can be deduced from submillimeter photometry. We present JCMT/SCUBA flux measurements at 850 microns toward 8 stars with large photospheric excesses at 60-100 microns. 5 sources were detected at 3-sigma or greater significance and one was marginally detected at 2.5-sigma. The inferred dust masses and temperatures range from 0.033 to 0.24 Earth masses and 43-65 K respectively. The frequency behavior of the opacity, tau_nu ~ nu^beta, is relatively shallow, beta < 1. These dust properties are characteristic of circumstellar material, most likely the debris from planetesimal collisions. The 2 non-detections have lower temperatures, 35-38 K and steeper opacity indices, beta > 1.5, that are more typical of interstellar cirrus. The confirmed disks all have inferred diameters > 2'', most lie near the upper envelope of the debris disk mass distribution, and 4 are bright enough to be feasible for high resolution imaging.Comment: accepted by Ap

    Sound Propagation in Elongated Bose-Einstein Condensed Clouds

    Full text link
    We consider propagation of sound pulses along the long axis of a Bose-Einstein condensed cloud in a very anisotropic trap. In the linear regime, we demonstrate that the square of the velocity of propagation is given by the square of the local sound velocity, c2=nU0/mc^2=nU_0/m, averaged over the cross section of the cloud. We also carry out calculations in the nonlinear regime, and determine how the speed of the pulse depends on its amplitude.Comment: 4 pages, revtex, 3 eps figure
    corecore