27,265 research outputs found

    The Dust Properties of Eight Debris Disk Candidates as Determined by Submillimeter Photometry

    Full text link
    The nature of far-infrared dust emission toward main sequence stars, whether interstellar or circumstellar, can be deduced from submillimeter photometry. We present JCMT/SCUBA flux measurements at 850 microns toward 8 stars with large photospheric excesses at 60-100 microns. 5 sources were detected at 3-sigma or greater significance and one was marginally detected at 2.5-sigma. The inferred dust masses and temperatures range from 0.033 to 0.24 Earth masses and 43-65 K respectively. The frequency behavior of the opacity, tau_nu ~ nu^beta, is relatively shallow, beta < 1. These dust properties are characteristic of circumstellar material, most likely the debris from planetesimal collisions. The 2 non-detections have lower temperatures, 35-38 K and steeper opacity indices, beta > 1.5, that are more typical of interstellar cirrus. The confirmed disks all have inferred diameters > 2'', most lie near the upper envelope of the debris disk mass distribution, and 4 are bright enough to be feasible for high resolution imaging.Comment: accepted by Ap

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues

    Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter α\alpha

    Full text link
    We present several conjectures on the behavior and clustering properties of Jack polynomials at \emph{negative} parameter α=−k+1r−1\alpha=-\frac{k+1}{r-1}, of partitions that violate the (k,r,N)(k,r,N) admissibility rule of Feigin \emph{et. al.} [\onlinecite{feigin2002}]. We find that "highest weight" Jack polynomials of specific partitions represent the minimum degree polynomials in NN variables that vanish when ss distinct clusters of k+1k+1 particles are formed, with ss and kk positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.Comment: 12 page

    How to measure the Bogoliubov quasiparticle amplitudes in a trapped condensate

    Full text link
    We propose an experiment, based on two consecutive Bragg pulses, to measure the momentum distribution of quasiparticle excitations in a trapped Bose gas at low temperature. With the first pulse one generates a bunch of excitations carrying momentum qq, whose Doppler line is measured by the second pulse. We show that this experiment can provide direct access to the amplitudes uqu_{q} and vqv_{q} characterizing the Bogoliubov transformations from particles to quasiparticles. We simulate the behavior of the nonuniform gas by numerically solving the time dependent Gross-Pitaevskii equation.Comment: 12 pages, 4 figures include

    Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=kr\nu=\frac{k}{r}

    Full text link
    We compute the physical properties of non-Abelian Fractional Quantum Hall (FQH) states described by Jack polynomials at general filling ν=kr\nu=\frac{k}{r}. For r=2r=2, these states are identical to the ZkZ_k Read-Rezayi parafermions, whereas for r>2r>2 they represent new FQH states. The r=k+1r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9...2/5, 3/7, 4/9.... We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and show that the non-Abelian quasihole has a well-defined propagator falling off with the distance. The clustering properties of the Jack polynomials, provide a strong indication that the states with r>2r>2 can be obtained as correlators of fields of \emph{non-unitary} conformal field theories, but the CFT-FQH connection fails when invoked to compute physical properties such as thermal Hall coefficient or, more importantly, the quasihole propagator. The quasihole wavefuntion, when written as a coherent state representation of Jack polynomials, has an identical structure for \emph{all} non-Abelian states at filling ν=kr\nu=\frac{k}{r}.Comment: 2 figure

    THE EFFECT OF TEMPERATURE ON FLOWERS

    Full text link

    Dynamics of Macroscopic Wave Packet Passing through Double Slits: Role of Gravity and Nonlinearity

    Full text link
    Using the nonlinear Schroedinger equation (Gross-Pitaevskii equation), the dynamics of a macroscopic wave packet for Bose-Einstein condensates falling through double slits is analyzed. This problem is identified with a search for the fate of a soliton showing a head-on collision with a hard-walled obstacle of finite size. We explore the splitting of the wave packet and its reorganization to form an interference pattern. Particular attention is paid to the role of gravity (g) and repulsive nonlinearity (u_0) in the fringe pattern. The peak-to-peak distance in the fringe pattern and the number of interference peaks are found to be proportional to g^(-1/2) and u_0^(1/2)g^(1/4), respectively. We suggest a way of designing an experiment under controlled gravity and nonlinearity.Comment: 10 pages, 4 figures and 1 tabl

    The transient response of global-mean precipitation to increasing carbon dioxide levels

    Get PDF
    The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte
    • …
    corecore