24,443 research outputs found

    System and method for moving a probe to follow movements of tissue

    Get PDF
    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe

    Quantum channels in nonlinear optical processes

    Get PDF
    Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear optical processes. The treatment elicits the detailed role and interplay of specific quantum channels, information that is not afforded by other methods. Following an illustrative application to the case of Rayleigh scattering, the method is applied to second and third harmonic generation. Derivations are given of parameters that quantify the various quantum channels and their interferences; the results are illustrated graphically. With given examples, it is shown in some systems that optical nonlinearity owes its origin to an isolated channel, or a small group of channels. © 2009 World Scientific Publishing Company

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics

    Lake sedimentological and ecological response to hyperthermals : Boltysh impact crater, Ukraine

    Get PDF
    Acknowledgements Initial drilling of the Boltysh meteorite crater was funded by Natural Environment Research Council (NERC) grant NE/D005043/1. The authors are extremely grateful to the valuable scientific contributions of S. Kelley and I. Gilmour. The constructive and critical reviews by M. Schuster and an anonymous reviewer greatly helped to improve this manuscript.Peer reviewedPostprin
    corecore