2,114 research outputs found

    Bursty star formation feedback and cooling outflows

    Get PDF
    We study how outflows of gas launched from a central galaxy undergoing repeated starbursts propagate through the circumgalactic medium (CGM), using the simulation code RAMSES. We assume that the outflow from the disk can be modelled as a rapidly moving bubble of hot gas at 1  kpc\mathrm{\sim1\;kpc} above disk, then ask what happens as it moves out further into the halo around the galaxy on 100  kpc\mathrm{\sim 100\;kpc} scales. To do this we run 60 two-dimensional simulations scanning over parameters of the outflow. Each of these is repeated with and without radiative cooling, assuming a primordial gas composition to give a lower bound on the importance of cooling. In a large fraction of radiative-cooling cases we are able to form rapidly outflowing cool gas from in situ cooling of the flow. We show that the amount of cool gas formed depends strongly on the 'burstiness' of energy injection; sharper, stronger bursts typically lead to a larger fraction of cool gas forming in the outflow. The abundance ratio of ions in the CGM may therefore change in response to the detailed historical pattern of star formation. For instance, outflows generated by star formation with short, intense bursts contain up to 60 per cent of their gas mass at temperatures <5×104K<5 \times 10^4\,\mathrm{K}; for near-continuous star formation the figure is \lesssim 5 per cent. Further study of cosmological simulations, and of idealised simulations with e.g., metal-cooling, magnetic fields and/or thermal conduction, will help to understand the precise signature of bursty outflows on observed ion abundances.Comment: 8 pages, 6 figures, accepted in MNRA

    Rhode Island State Council on the Arts (1979-1992): Report 02

    Get PDF
    .csv file with the outcome data for predatory trials in the restraint experimen

    Snap-jaw morphology is specialized for high-speed power amplification in the Dracula ant, \u3cem\u3eMystrium camillae\u3c/em\u3e

    Get PDF
    What is the limit of animal speed and what mechanisms produce the fastest movements? More than natural history trivia, the answer provides key insight into the form-function relationship of musculoskeletal movement and can determine the outcome of predator-prey interactions. The fastest known animal movements belong to arthropods, including trap-jaw ants, mantis shrimp and froghoppers, that have incorporated latches and springs into their appendage systems to overcome the limits of muscle power. In contrast to these examples of power amplification, where separate structures act as latch and spring to accelerate an appendage, some animals use a \u27snap-jaw\u27 mechanism that incorporates the latch and spring on the accelerating appendage itself. We examined the kinematics and functional morphology of the Dracula ant, Mystrium camillae, who use a snap-jaw mechanism to quickly slide their mandibles across each other similar to a finger snap. Kinematic analysis of high-speed video revealed that snap-jaw ant mandibles complete their strike in as little as 23 μsec and reach peak velocities of 90 m s-1, making them the fastest known animal appendage. Finite-element analysis demonstrated that snap-jaw mandibles were less stiff than biting non-power-amplified mandibles, consistent with their use as a flexible spring. These results extend our understanding of animal speed and demonstrate how small changes in morphology can result in dramatic differences in performance

    Spatial Pattern and Determinants of the First Detection Locations of Invasive Alien Species in Mainland China

    Get PDF
    BACKGROUND: The unintentional transport of species as a result of human activities has reached unprecedented rates. Once established, introduced species can be nearly impossible to eradicate. It is therefore essential to identify and monitor locations where invaders are most likely to establish new populations. Despite the obvious value of early detection, how does an agency identify areas that are most vulnerable to new invaders? Here we propose a novel approach by using the "first detection location" (FDL) of introduced species in China to quantify characteristics of areas where introduced species are first reported. METHODOLOGY/PRINCIPAL FINDINGS: We obtained FDLs for 166 species (primarily agricultural and forestry pests) that were unintentionally introduced into China prior to 2008 from literature searches. The spatial pattern and determinants of FDLs were examined at the provincial level. The spatial pattern of FDLs varied among provinces with more commerce and trade and economically developed provinces in coastal regions having more FDLs than interior provinces. For example, 74.6% of FDLs were distributed in coastal regions despite that they only cover 15.6% of the total area in China. Variables that may be indicators of "introduction pressure" (e.g. the amount of received commerce) had an overwhelming effect on the number of FDLs in each province (R(2) = 0.760). CONCLUSIONS/SIGNIFICANCE: Our results suggest that "introduction pressure" may be one of the most important factors that determine the locations where newly-introduced species are first detected, and that open and developed provinces in China should be prioritized when developing monitoring programs that focus on locating and managing new introductions. Our study illustrates that FDL approaches can contribute to the study and management of biological invasions not only for China but also for elsewhere

    The evolution of genome size in ants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae) remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (<it>Solenopsis invicta</it>), and the two published estimates for this species differ by 146.7 Mb (0.15 pg).</p> <p>Results</p> <p>Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4<sup>th </sup>most surveyed insect family and elevating the Hymenoptera to the 5<sup>th </sup>most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (<it>Linepithema humile</it>), Neotropical army ants (genera <it>Eciton </it>and <it>Labidus</it>), trapjaw ants (<it>Odontomachus</it>), fungus-growing ants (<it>Apterostigma</it>, <it>Atta </it>and <it>Sericomyrmex</it>), harvester ants (<it>Messor</it>, <it>Pheidole </it>and <it>Pogonomyrmex</it>), carpenter ants (<it>Camponotus</it>), a fire ant (<it>Solenopsis</it>), and a bulldog ant (<it>Myrmecia</it>). Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern <it>Ectatomma </it>and <it>Apterostigma</it>. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship.</p> <p>Conclusion</p> <p>This is the first analysis of genome size in ants (Formicidae) and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may include occasional whole-genome duplication. The small genome sizes of ants, combined with their ecological, evolutionary and agricultural importance, suggest that some of these species may be good candidates for future whole-genome sequencing projects.</p

    Proteomic and functional analyses of the virion transmembrane proteome of cyprinid herpesvirus 3

    Get PDF
    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (ORF32, ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are non-essential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the non-essential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25 deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the non-essential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins

    Effect of social structure and introduction history on genetic diversity and differentiation

    Get PDF
    Invasive species are a global threat to biodiversity, and understanding their history and biology is a major goal of invasion biology. Population-genetic approaches allow insights into these features, as population structure is shaped by factors such as invasion history (number, origin and age of introductions) and life-history traits (e.g., mating system, dispersal capability). We compared the relative importance of these factors by investigating two closely related ants, Tetramorium immigrans and Tetramorium tsushimae, that differ in their social structure and invasion history in North America. We used mitochondrial DNA sequences and microsatellite alleles to estimate the source and number of introduction events of the two species, and compared genetic structure among native and introduced populations. Genetic diversity of both species was strongly reduced in introduced populations, which also differed genetically from native populations. Genetic differentiation between ranges and the reduction in microsatellite diversity were more severe in the more recently introduced and supercolonial T. tsushimae. However, the loss of mitochondrial haplotype diversity was more pronounced in T. immigrans, which has single-queen colonies and was introduced earlier. Tetramorium immigrans was introduced at least twice from Western Europe to North America and once independently to South America. Its monogyny might have limited genetic diversity per introduction, but new mutations and successive introductions over a long time may have added to the gene pool in the introduced range. Polygyny in T. tsushimae probably facilitated the simultaneous introduction of several queens from a Japanese population to St. Louis, USA. In addition to identifying introduction pathways, our results reveal how social structure can influence the population-genetic consequences of founder events
    corecore