3,728 research outputs found

    Tweet Mapper Visualization Software

    Get PDF

    Identifying culturally appropriate strategies for coronary heart disease secondary prevention in a regional Aboriginal Medical Service

    Get PDF
    Aboriginal Australians experience high rates of coronary heart disease (CHD) at an early age, highlighting the importance of effective secondary prevention. This study employed a two-stage process to evaluate CHD management in a regional Aboriginal Medical Service. Stage 1 involved an audit of 94 medical records of clients with documented CHD using the Audit and Best Practice in Chronic Disease approach to health service quality improvement. Results from the audit informed themes for focus group discussions with Aboriginal Medical Service clients (n = 6) and staff (n = 6) to ascertain barriers and facilitators to CHD management. The audit identified that chronic disease management was the focus of appointments more frequently than in national data (P < 0.05), with brief interventions for lifestyle modification occurring at similar or greater frequency. However, referrals to follow-up support services for secondary prevention were lower (P < 0.05). Focus groups identified psychosocial factors, systemic shortcomings, suboptimal medication use and variable awareness of CHD signs and symptoms as barriers to CHD management, whereas family support and culturally appropriate education promoted health care. To optimise CHD secondary prevention for Aboriginal people, health services require adequate resources to achieve best-practice systems of follow up. Routinely engaging clients is required to ensure services meet diverse community needs

    Effect of nuclear motion on the critical nuclear charge for two-electron atoms

    Get PDF
    A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of ZC=Z_C= 0.911 028 2(3) is in very good agreement with recent values in the literature for two-electron atoms with an infinite nuclear mass. When nuclear motion is considered, the value for Zc varies from 0.911 030 3(2) for that with a nuclear mass of Ne (the largest heliogenic system considered) to 0.921 802 4(4) for a system with the nuclear mass of a positron. In all cases the energy varies smoothly as Z0Z \rightarrow 0. It is found that for the finite nuclear mass case, in agreement with previous work for the fixed nucleus mass system, the outer electron remains localised near the nucleus at Z = Zc. Additionally, the electron probability distribution is calculated to determine the behaviour of the electrons at low Z

    Effect of Age at Menarche on Anterior Cruciate Ligament Injury Incidence and Anterior Knee Laxity in Collegiate Athletes

    Get PDF
    Female athletes suffer painful, costly, and career-limiting non-contact anterior cruciate ligament (ACL) injuries more often than males. Previous research suggests that pubertal neuromusculoskeletal development contributes to this sex-bias, but the manner in which variation in pubertal development affects injury risk within females is poorly understood. Age at menarche is a variable, significant pubertal developmental event, signaling the onset of estrogen cycling and affecting musculoskeletal development. Earlier menarche may increase injury risk, possibly by increasing anterior knee laxity through prolonged estrogen exposure. The purpose of this case-control study was to test the primary hypothesis that collegiate athletes with previous ACL injuries have earlier age at menarche than their uninjured peers, and to test the secondary hypothesis that earlier menarche is related to greater anterior knee laxity in injured and uninjured athletes. The study sample consisted of female NCAA Division-I varsity athletes (N=14 injured, N=120 uninjured). Outcome measures included: menstrual history and ACL injury details (injury age, activity at time of injury, contact vs. non-contact), assessed by questionnaire; and anterior knee laxity assessed by KT-1000 arthrometer. Correlation, t-tests, and regression analysis were used to test for associations between age at menarche, injury incidence, and knee laxity. Fourteen athletes reported ≥1 non-contact ACL injury, and had significantly earlier menarche than uninjured athletes (12.6±1.3 y vs. 13.4±1.4 y; P=0.05). Earlier menarche also significantly predicted injury status (Wald c2=7.43; Pb=-1.02±0.37; OR=0.36; 95% CI:0.17-0.75), but was not correlated with anterior knee laxity. Within injured athletes, however, laxity in the unaffected knee was significantly related to time since menarche (r2=0.79, Pr2=0.72,

    Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

    Get PDF
    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.United States. National Nuclear Security Administration (Contract DE-AC04-94AL85000)United States. Air Force (Contract FA8721-05-C-000)United States. Defense Advanced Research Projects Agency (MesoDynamic Architectures Program)Sandia National Laboratories (Directed Research and Development Program

    Luminous Infrared Galaxies with the Submillimeter Array: I. Survey Overview and the Central Gas to Dust Ratio

    Get PDF
    We present new data obtained with the Submillimeter Array for a sample of fourteen nearby luminous and ultraluminous infrared galaxies. The galaxies were selected to have luminosity distances D < 200 Mpc and far-infrared luminosities log(L_FIR) > 11.4. The galaxies were observed with spatial resolutions of order 1 kpc in the CO J=3-2, CO J=2-1, 13CO J=2-1, and HCO+ J=4-3 lines as well as the continuum at 880 microns and 1.3 mm. We have combined our CO and continuum data to measure an average gas-to-dust mass ratio of 120 +/- 28 (rms deviation 109) in the central regions of these galaxies, very similar to the value of 150 determined for the Milky Way. This similarity is interesting given the more intense heating from the starburst and possibly accretion activity in the luminous infrared galaxies compared to the Milky Way. We find that the peak H_2 surface density correlates with the far-infrared luminosity, which suggests that galaxies with higher gas surface densities inside the central kiloparsec have a higher star formation rate. The lack of a significant correlation between total H_2 mass and far-infrared luminosity in our sample suggests that the increased star formation rate is due to the increased availability of molecular gas as fuel for star formation in the central regions. In contrast to previous analyses by other authors, we do not find a significant correlation between central gas surface density and the star formation efficiency, as trace by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that it is the star formation rate, not the star formation efficiency, that increases with increasing central gas surface density in these galaxies.Comment: 66 pages, 39 figures, aastex preprint format; to be published in ApJ Supplements. Version of paper with full resolution figures available at http://www.physics.mcmaster.ca/~wilson/www_xfer/ULIRGS_publi

    X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy

    Get PDF
    Conventional photodynamic therapy (PDT)'s clinical application is limited by depth of penetration by light. To address the issue, we have recently developed X-ray induced photodynamic therapy (X-PDT) which utilizes X-ray as an energy source to activate a PDT process. In addition to breaking the shallow tissue penetration dogma, our studies found more efficient tumor cell killing with X-PDT than with radiotherapy (RT) alone. The mechanisms behind the cytotoxicity, however, have not been elucidated. In the present study, we investigate the mechanisms of action of X-PDT on cancer cells. Our results demonstrate that X-PDT is more than just a PDT derivative but is essentially a PDT and RT combination. The two modalities target different cellular components (cell membrane and DNA, respectively), leading to enhanced therapy effects. As a result, X-PDT not only reduces short-term viability of cancer cells but also their clonogenecity in the long-run. From this perspective, X-PDT can also be viewed as a unique radiosensitizing method, and as such it affords clear advantages over RT in tumor therapy, especially for radioresistant cells. This is demonstrated not only in vitro but also in vivo with H1299 tumors that were either subcutaneously inoculated or implanted into the lung of mice. These findings and advances are of great importance to the developments of X-PDT as a novel treatment modality against cancer

    Scalability of Non-intrusive Load Monitoring for Shipboard Applications

    Get PDF
    The non-intrusive load monitor has been demonstrated as an effective tool for evaluating and monitoring shipboard electro-mechanical systems through analysis of electrical power data. A key advantage of the non-intrusive approach is the ability to reduce sensor count by monitoring collections of loads. This paper reviews trade-offs that affect the likely performance of the NILM in a real world environment.Massachusetts Institute of Technology. Sea Grant College Program; Grainger Foundation; National Science Foundation (U.S.); United States. National Aeronautics and Space Administration; United States. Coast Guard; United States. Office of Naval Research. Electric Ship Research and Development Consortium; NAVSEA; University of North Carolin
    corecore