5 research outputs found
How big can a black hole grow?
I show that there is a physical limit to the mass of a black hole, above which it cannot grow through luminous accretion of gas, and so cannot appear as a quasar or active galactic nucleus (AGN). The limit is Mmax ≃ 5 × 1010 M⊙ for typical parameters, but can reach Mmax ≃ 2.7 × 1011 M⊙ in extreme cases (e.g. maximal prograde spin). The largest black hole masses so far found are close to but below the limit. The Eddington luminosity ≃6.5 × 1048 erg s−1 corresponding to Mmax is remarkably close to the largest AGN bolometric luminosity so far observed. The mass and luminosity limits both rely on a reasonable but currently untestable hypothesis about AGN disc formation, so future observations of extreme supermassive black hole masses can therefore probe fundamental disc physics. Black holes can in principle grow their masses above Mmax by non-luminous means such as mergers with other holes, but cannot become luminous accretors again. They might nevertheless be detectable in other ways, for example through gravitational lensing. I show further that black holes with masses ∼Mmax can probably grow above the values specified by the black-hole–host-galaxy scaling relations, in agreement with observation
Galaxy-wide outflows: cold gas and star formation at high speeds
Several active galaxies show strong evidence for fast (v[Subscript: out] ∼ 1000 km s[Superscript: −1]) massive (M˙=M˙= several × 1000 M[Subscript: ⊙] yr[Superscript: −1]) gas outflows. Such outflows are expected on theoretical grounds once the central supermassive black hole reaches the mass set by the M-σ relation, and may be what makes galaxies become red and dead. Despite their high velocities, which imply temperatures far above those necessary for molecule dissociation, the outflows contain large amounts of molecular gas. To understand this surprising result, we investigate the gas cooling and show that the outflows cannot stably persist in high-temperature states. Instead, the outflowing gas forms a two-phase medium, with cold dense molecular clumps mixed with hot tenuous gas, as observed. We also show that efficient cooling leads to star formation, providing an observable outflow signature. The central parts of the outflows can be intrinsically luminous gamma-ray sources, provided that the central black hole is still strongly accreting. We note also that these outflows can persist for ∼108 yr after the central AGN has turned off, so that many observed outflows (particularly with high speeds) otherwise assumed to be driven by starbursts might also be of this type
X-RAY TRANSIENTS: HYPER- OR HYPO-LUMINOUS?
The disk instability picture gives a plausible explanation for the behavior of soft X-ray transient systems if self-irradiation of the disk is included. We show that there is a simple relation between the peak luminosity (at the start of an outburst) and the decay timescale. We use this relation to place constraints on systems assumed to undergo disk instabilities. The observable X-ray populations of elliptical galaxies must largely consist of long-lived transients, as deduced on different grounds by Piro & Bildsten (2002). The strongly varying X-ray source HLX-1 in the galaxy ESO 243-49 can be modeled as disk instability of a highly super-Eddington stellar-mass binary similar to SS 433. A fit to the disk instability picture is not possible with an intermediate-mass black hole model for HLX-1. Other recently identified super-Eddington ULXs might be subject to disk instability
Tearing up a misaligned accretion disc with a binary companion
Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries
THE TWO-DIMENSIONAL PROJECTED SPATIAL DISTRIBUTION OF GLOBULAR CLUSTERS. I. METHOD AND APPLICATION TO NGC 4261
We present a new method for the determination of the two-dimensional (2D) projected spatial distribution of globular clusters (GCs) in external galaxies. This method is based on the K-Nearest Neighbor density estimator of Dressler, complemented by Monte-Carlo simulations to establish the statistical significance of the results. We apply this method to NGC 4261, a "test galaxy" where significant 2D anisotropy in the GC distribution has been reported. We confirm that the 2D distribution of GC is not azimuthally isotropic. Moreover, we demonstrate that the 2D distribution departures from the average GC radial distribution results in highly significant spiral-like or broken shell features. Overall, the same perturbations are found in "red" and "blue" GCs, but with some differences. In particular, we observe a central feature, roughly aligned with the minor axis of NGC 4261, composed of red and most luminous GCs. Blue and fainter GCs are more frequent at large radial distances and follow the spiral-like features of the overall density structure. These results suggest a complex merging history for NGC 4261