1,778 research outputs found

    Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma.

    Get PDF
    Clinical TrialMulticenter StudyThis is the peer reviewed version of the article which has been published in final form at DOI: 10.1111/j.1365-2133.2008.08668.x This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.© 2008 The AuthorsJournal Compilation © 2008 British Association of DermatologistsBACKGROUND: Photodynamic therapy (PDT) involves the activation of a photosensitizer by visible light to produce activated oxygen species within target cells, resulting in their destruction. Evidence-based guidelines support the efficacy of PDT using topical 5-aminolaevulinic acid (ALA-PDT) in actinic keratoses, Bowen disease and basal cell carcinoma (BCC). Efficacy for nodular BCC appears inferior to that for superficial BCC unless prior debulking or repeat treatments are performed. Objectives The aim of this study was to assess the safety and efficacy of adding a novel iron-chelating agent, CP94 (1,2-diethyl-3-hydroxypyridin-4-one hydrochloride), to topical ALA, to temporarily increase the accumulation of the photosensitizer in the tumour. METHODS: A mixed topical formulation of ALA + increasing concentrations of CP94 was used to carry out PDT on previously biopsied nodular BCC with no prior lesion preparation using standard light delivery. The area was assessed clinically and surgically excised 6 weeks later for histological examination. RESULTS: Enhanced PDT using 40% CP94 resulted in significantly greater clearance rates in nodular BCC than with ALA-PDT alone, in our protocol of single-treatment PDT with no lesion preparation. CONCLUSIONS: The results of this study demonstrate the safe and effective use of an enhanced ALA-PDT protocol for nodular BCC using CP94, with no adverse reactions to this modification. This is the first time this formulation has been used in patients. This formulation is now the focus of further study

    High Fidelity Single Qubit Operations using Pulsed EPR

    Get PDF
    Systematic errors in spin rotation operations using simple RF pulses place severe limitations on the usefulness of the pulsed magnetic resonance methods in quantum computing applications. In particular, the fidelity of quantum logic operations performed on electron spin qubits falls well below the threshold for the application of quantum algorithms. Using three independent techniques, we demonstrate the use of composite pulses to improve this fidelity by several orders of magnitude. The observed high-fidelity operations are limited by pulse phase errors, but nevertheless fall within the limits required for the application of quantum error correction.Comment: 4 pages, 3 figures To appear in Phys. Rev. Let

    Measuring errors in single qubit rotations by pulsed electron paramagnetic resonance

    Full text link
    The ability to measure and reduce systematic errors in single-qubit logic gates is crucial when evaluating quantum computing implementations. We describe pulsed electron paramagnetic resonance (EPR) sequences that can be used to measure precisely even small systematic errors in rotations of electron-spin-based qubits. Using these sequences we obtain values for errors in rotation angle and axis for single-qubit rotations using a commercial EPR spectrometer. We conclude that errors in qubit operations by pulsed EPR are not limiting factors in the implementation of electron-spin based quantum computers

    Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions

    Get PDF
    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters towards to their present day positions. Many observed short period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48%±9%48\%\pm9\%, 47%±12%47\%\pm12\%, and 51%±13%51\%\pm13\% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8 σ2.8\,\sigma larger than the fraction of field stars with companions approximately 50−2000 50-2000\,AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72%±16%72\% \pm 16\% of hot Jupiters are part of multi-planet and/or multi-star systems.Comment: typos and references updated; 25 pages, 7 figures and 10 tables, accepted for publication in Ap

    Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin

    Get PDF
    Funding This research received no external funding. Acknowledgments We are grateful to John Still (University of Aberdeen) and Iain Macdonald (Cardiff University) for their assistance with acquisition of mineral chemical data, and to Mick Pointon (CASP) for running the “R” code to assign apatite provenance. This research was carried out as part of CASP’s Greenland-Norway Project. Our sponsors’ financial support is gratefully acknowledged. We are grateful for the reviewers comments, which significantly improved the manuscript.Peer reviewedPublisher PD

    Environmental effects on electron spin relaxation in N@C60

    Get PDF
    We examine environmental effects of surrounding nuclear spins on the electron spin relaxation of the N@C60 molecule (which consists of a nitrogen atom at the centre of a fullerene cage). Using dilute solutions of N@C60 in regular and deuterated toluene, we observe and model the effect of translational diffusion of nuclear spins of the solvent molecules on the N@C60 electron spin relaxation times. We also study spin relaxation in frozen solutions of N@C60 in CS2, to which small quantities of a glassing agent, S2Cl2 are added. At low temperatures, spin relaxation is caused by spectral diffusion of surrounding nuclear 35Cl and 37Cl spins in the S2Cl2, but nevertheless, at 20 K, T2 times as long as 0.23 ms are observed.Comment: 7 pages, 6 figure

    Molecular evidence for gender differences in the migratory behaviour of a small seabird

    Get PDF
    Molecular sexing revealed an unexpectedly strong female bias in the sex ratio of pre-breeding European Storm Petrels (Hydrobates pelagicus), attracted to playback of conspecific calls during their northwards migration past SW Europe. This bias was consistent across seven years, ranging from 80.8% to 89.7% female (mean annual sex ratio ± SD = 85.5% female ±4.1%). The sex ratio did not differ significantly from unity (i.e., 50% female) among (i) Storm Petrel chicks at a breeding colony in NW France, (ii) adults found dead on beaches in Southern Portugal, (iii) breeding birds attending nest burrows in the UK, captured by hand, and (iv) adults captured near a breeding colony in the UK using copies of the same sound recordings as used in Southern Europe, indicating that females are not inherently more strongly attracted to playback calls than males. A morphological discriminant function analysis failed to provide a good separation of the sexes, showing the importance of molecular sexing for this species. We found no sex difference in the seasonal or nocturnal timing of migration past Southern Europe, but there was a significant tendency for birds to be caught in sex-specific aggregations. The preponderance of females captured in Southern Europe suggests that the sexes may differ in migration route or in their colony-prospecting behaviour during migration, at sites far away from their natal colonies. Such differences in migration behaviour between males and females are poorly understood but have implications for the vulnerability of seabirds to pollution and environmental change at sea during the non-breeding season

    Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-14b is Retrograde

    Get PDF
    We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of λ = –4.9 ± 11.9 deg. In contrast, HAT-P-14b is retrograde, with λ = 189.1 ± 5.1 deg. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star

    A new mechanism for electron spin echo envelope modulation

    Full text link
    Electron spin echo envelope modulation (ESEEM) has been observed for the first time from a coupled hetero-spin pair of electron and nucleus in liquid solution. Previously, modulation effects in spin echo experiments have only been described in liquid solutions for a coupled pair of homonuclear spins in NMR or a pair of resonant electron spins in EPR. We observe low-frequency ESEEM (26 and 52 kHz) due to a new mechanism present for any electron spin with S>1/2 that is hyperfine coupled to a nuclear spin. In our case these are electron spin (S=3/2) and nuclear spin (I=1) in the endohedral fullerene N@C60. The modulation is shown to arise from second order effects in the isotropic hyperfine coupling of an electron and 14N nucleus.Comment: 15 pages, 4 figure
    • 

    corecore