5,334 research outputs found

    Critical test of multi-{\it j} supersymmetries from magnetic moment measurements

    Get PDF
    Magnetic moment measurements in odd nuclei directly probe the distribution of fermion states and hence provide one of the most critical tests for multi-jj supersymmetries in collective nuclei. Due to complexity of calculations and lack of data, such tests have not been performed in the past. Using the Mathematica software, we derive analytic expressions for magnetic moments in the SO(BF)(6)×SU(F)(2)SO^{(BF)}(6) \times SU^{(F)}(2) limit of the U(6/12)U(6/12) supersymmetry and compare the results with recent measurements in 195^{195}Pt.Comment: 10 pages with 1 figur

    Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12.

    Get PDF
    Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner

    Lifelongα-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage

    Get PDF
    The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 ± 2°C and supplemented their diet with α-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that α-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of α-tocopherol. We propose that the life span extension observed following α-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following α-tocopherol supplementation

    Classical size effect in oxide-encapsulated Cu thin films: Impact of grain boundaries versus surfaces on resistivity

    Get PDF
    A methodology is developed to independently evaluate surface and grain boundary scattering in silicon dioxide-encapsulated, polycrystalline Cu thin films. The room-temperature film resistivity for samples with film thicknesses in the range of 27 to 1 65 nm and different grain sizes (determined from approximately 400 to 1500 grains per sample) is compared to existing and empirical models of surface and grain boundary scattering. For the combined effects of surface and grain boundary scattering, the surface specularity parameter p is 0.6 +/- 0.2 and the grain boundary reflectivity coefficient R is 0.45 +/- 0.03. It is thereby shown that the resistivity contribution from grain boundary scattering is significantly greater than that of surface scattering for Cu thin films having Cu/SiO2 surfaces and grain sizes similar to film thickness. (C) 2008 American Vacuum Society

    Mu-Metal Enhancement of Effects in Electromagnetic Fields Over Single Emitters Near Topological Insulators

    Full text link
    We focus on the transmission and reflection coefficients of light in systems involving of topological insulators (TI). Due to the electro-magnetic coupling in TIs, new mixing coefficients emerge leading to new components of the electromagnetic fields of propagating waves. We have discovered a simple heterostructure that provides a 100-fold enhancement of the mixing coefficients for TI materials. Such effect increases with the TI's wave impedance. We also predict a transverse deviation of the Poynting vector due to these mixed coefficients contributing to the radiative electromagnetic field of an electric dipole. Given an optimal configuration of the dipole-TI system, this deviation could amount to 0.18%0.18\% of the Poynting vector due to emission near not topological materials, making this effect detectable
    corecore