1,953 research outputs found

    Initial test results on bolometers for the Planck high frequency instrument

    Get PDF
    We summarize the fabrication, flight qualification, and dark performance of bolometers completed at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2009. The HFI is a multicolor focal plane which consists of 52 bolometers operated at 100 mK. Each bolometer is mounted to a feedhorn-filter assembly which defines one of six frequency bands centered between 100-857 GHz. Four detectors in each of five bands from 143-857 GHz are coupled to both linear polarizations and thus measure the total intensity. In addition, eight detectors in each of four bands (100, 143, 217, and 353 GHz) couple only to a single linear polarization and thus provide measurements of the Stokes parameters, Q and U, as well as the total intensity. The measured noise equivalent power (NEP) of all detectors is at or below the background limit for the telescope and time constants are a few ms, short enough to resolve point sources as the 5 to 9 arc min beams move across the sky at 1 rpm

    A-to-I RNA editing does not change with age in the healthy male rat brain

    Get PDF
    RNA editing is a post-transcriptional process, which results in base substitution modifications to RNA. It is an important process in generating protein diversity through amino acid substitution and the modulation of splicing events. Previous studies have suggested a link between gene-specific reductions in adenosine to inosine RNA editing and aging in the human brain. Here we demonstrate that changes in RNA editing observed in humans with age are not observed during aging in healthy rats. Furthermore, we identify a conserved editing site in rats, in Cog3. We propose that either age-related changes in RNA editing are specific to primates or humans, or that they are the manifestation of disease pathology. Since rodents are often used as model organisms for studying aging, these findings demonstrate the importance of understanding species-specific differences in RNA biology during aging. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10522-013-9433-8) contains supplementary material, which is available to authorized users

    Optical mapping and optogenetics in cardiac electrophysiology research and therapy:a state-of-the-art review

    Get PDF
    State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping techniques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies

    Infants lost in (peripersonal) space?

    Get PDF
    A significant challenge in developing spatial representations for the control of action is one of multisensory integration. Specifically, we require an ability to efficiently integrate sensory information arriving from multiple modalities pertaining to the relationships between the acting limbs and the nearby external world (i.e. peripersonal space), across changes in body posture and limb position. Evidence concerning the early development of such spatial representations points towards the independent emergence of two distinct mechanisms of multisensory integration. The earlier-developing mechanism achieves spatial correspondence by representing body parts in their typical or default locations, and the later-developing mechanism does so by dynamically remapping the representation of the position of the limbs with respect to external space in response to changes in postural information arriving from proprioception and vision

    Impact of Obesity on Atrial Fibrillation Pathogenesis and Treatment Options

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia. AF increases the risk of stroke, heart failure, dementia, and hospitalization. Obesity significantly increases AF risk, both directly and indirectly, through related conditions, like hypertension, diabetes, and heart failure. Obesity-driven structural and electrical remodeling contribute to AF via several reported mechanisms, including adiposity, inflammation, fibrosis, oxidative stress, ion channel alterations, and autonomic dysfunction. In particular, expanding epicardial adipose tissue during obesity has been suggested as a key driver of AF via paracrine signaling and direct infiltration. Weight loss has been shown to reverse these changes and reduce AF risk and recurrence after ablation. However, studies on how obesity affects pharmacologic or interventional AF treatments are limited. In this review, we discuss mechanisms by which obesity mediates AF and treatment outcomes, aiming to provide insight into obesity-drug interactions and guide personalized treatment for this patient subgroup.</p

    Clinical and service implications of a cognitive analytic therapy model of psychosis

    Get PDF
    Cognitive analytic therapy (CAT) is an integrative, interpersonal model of therapy predicated on a radically social concept of self, developed over recent years in the UK by Anthony Ryle. A CAT-based model of psychotic disorder has been developed much more recently based on encouraging early experience in this area. The model describes and accounts for many psychotic experiences and symptoms in terms of distorted, amplified or muddled enactments of normal or ‘neurotic’ reciprocal role procedures (RRPs) and of damage at a meta-procedural level to the structures of the self. Reciprocal role procedures are understood in CAT to represent the outcome of the process of internalization of early, sign-mediated, interpersonal experience and to constitute the basis for all mental activity, normal or otherwise. Enactments of maladaptive RRPs generated by early interpersonal stress are seen in this model to constitute a form of ‘internal expressed emotion’. Joint description of these RRPs and their enactments (both internally and externally) and their subsequent revision is central to the practice of CAT during which they are mapped out through written and diagrammatic reformulations. This model may usefully complement and extend existing approaches, notably recent CBT-based interventions, particularly with ‘difficult’ patients, and generate meaningful and helpful understandings of these disorders for both patients and their treating teams. We suggest that use of a coherent and robust model such as CAT could have important clinical and service implications in terms of developing and researching models of these disorders as well as for the training of multidisciplinary teams in their effective treatment

    Arrhythmogenesis in Fabry Disease

    Get PDF
    Purpose of Review Fabry Disease (FD) is a rare lysosomal storage disorder characterised by multiorgan accumulation of glycosphingolipid due to deficiency in the enzyme α-galactosidase A. Cardiac sphingolipid accumulation triggers various types of arrhythmias, predominantly ventricular arrhythmia, bradyarrhythmia, and atrial fibrillation. Arrhythmia is likely the primary contributor to FD mortality with sudden cardiac death, the most frequent cardiac mode of death. Traditionally FD was seen as a storage cardiomyopathy triggering left ventricular hypertrophy, diastolic dysfunction, and ultimately, systolic dysfunction in advanced disease. The purpose of this review is to outline the current evidence exploring novel mechanisms underlying the arrhythmia substrate. Recent Findings There is growing evidence that FD cardiomyopathy is a primary arrhythmic disease with each stage of cardiomyopathy (accumulation, hypertrophy, inflammation, and fibrosis) contributing to the arrhythmia substrate via various intracellular, extracellular, and environmental mechanisms. It is therefore important to understand how these mechanisms contribute to an individual’s risk of arrhythmia in FD. Summary In this review, we outline the epidemiology of arrhythmia, pathophysiology of arrhythmogenesis, risk stratification, and cardiac therapy in FD. We explore how advances in conventional cardiac investigations performed in FD patients including 12-lead electrocardiography, transthoracic echocardiography, and cardiac magnetic resonance imaging have enabled early detection of pro-arrhythmic substrate. This has allowed for appropriate risk stratification of FD patients. This paves the way for future work exploring the development of therapeutic initiatives and risk prediction models to reduce the burden of arrhythmia

    An evaluation of heart rate variability in female youth soccer players following soccer heading: A pilot study

    Get PDF
    Most head impacts in soccer occur from purposeful heading; however, the link between heading and neurological impairment is unknown. Previous work suggests concussion may result in an uncoupling between the autonomic nervous system and cardiovascular system. Accordingly, heart rate variability (HRV) may be a sensitive measure to provide meaningful information regarding repetitive heading in soccer. The purpose of this pilot study assesses the feasibility of measuring HRV to evaluate autonomic function following soccer heading. Sixteen youth female participants underwent heart rate monitoring during a heading and footing condition. Participants completed a five minute resting supine trial at the start and end of each testing session. Standard 450 g soccer balls were projected at 6 m/s towards participants. Participants performed five headers, for the header condition, and five footers for the footer condition. The HRV for resting supine trials, pre-and post-header and footer conditions were assessed for both time and frequency domains. HRV effect sizes were small when comparing conditions, except absolute low frequency (d = 0.61) and standard deviation of the normal-normal (NN) intervals (d = 0.63). Participant retention and adherence were high, without adverse events. Findings suggest HRV is a feasible measure for evaluating the effects of heading on autonomic function
    corecore