48 research outputs found

    The Nonsteroidal Farnesoid X Receptor Agonist Cilofexor (GS-9674) Improves Markers of Cholestasis and Liver Injury in Patients With Primary Sclerosing Cholangitis

    Get PDF
    Primary sclerosing cholangitis (PSC) represents a major unmet medical need. In a phase II double-blind, placebo-controlled study, we tested the safety and efficacy of cilofexor (formerly GS-9674), a nonsteroidal farnesoid X receptor agonist in patients without cirrhosis with large-duct PSC. Patients were randomized to receive cilofexor 100 mg (n = 22), 30 mg (n = 20), or placebo (n = 10) orally once daily for 12 weeks. All patients had serum alkaline phosphatase (ALP) > 1.67 × upper limit of normal and total bilirubin ≤ 2 mg/dL at baseline. Safety, tolerability, pharmacodynamic effects of cilofexor (serum C4 [7α-hydroxy-4-cholesten-3-one] and bile acids), and changes in liver biochemistry and serum fibrosis markers were evaluated. Overall, 52 patients were randomized (median age 43 years, 58% male, 60% with inflammatory bowel disease, 46% on ursodeoxycholic acid). Baseline median serum ALP and bilirubin were 348 U/L (interquartile range 288-439) and 0.7 mg/dL (0.5-1.0), respectively. Dose-dependent reductions in liver biochemistry were observed. At week 12, cilofexor 100 mg led to significant reductions in serum ALP (median reduction -21%; P = 0.029 versus placebo), gamma-glutamyl transferase (-30%; P < 0.001), alanine aminotransferase (ALT) (-49%; P = 0.009), and aspartate aminotransferase (-42%; P = 0.019). Cilofexor reduced serum C4 compared with placebo; reductions in bile acids were greatest with 100 mg. Relative reductions in ALP were similar between ursodeoxycholic acid-treated and untreated patients. At week 12, cilofexor-treated patients with a 25% or more relative reduction in ALP had greater reductions in serum alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, tissue inhibitor of metalloproteinase 1, C-reactive protein, and bile acids than nonresponders. Adverse events were similar between cilofexor and placebo-treated patients. Rates of grade 2 or 3 pruritus were 14% with 100 mg, 20% with 30 mg, and 40% with placebo. Conclusion: In this 12-week, randomized, placebo-controlled study, cilofexor was well tolerated and led to significant improvements in liver biochemistries and markers of cholestasis in patients with PSC

    Correction to: HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction induced injury

    Get PDF
    Following publication of the original article [1], the authors flagged that there is a discrepancy with the Availability of data and materials statement on page 12 of the article

    HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction-induced injury

    Get PDF
    BACKGROUND: In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. METHODS: Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. RESULTS: GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. CONCLUSION: The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems

    Satellite cell therapy – from mice to men

    Get PDF
    Abstract Satellite cells are rare mononuclear skeletal muscle-resident cells that are the chief contributors to regenerative myogenesis following muscle injury. Although first identified more than 50 years ago, it is only recently that the murine satellite cell has become molecularly defined with the ability to prospectively isolate these cells from their niche. Human satellite cells are considerably less well understood with relatively few studies having been performed on them. In this review, a critical evaluation of this literature is provided along with a discussion of the practical and methodological issues involved with research on human satellite cells. The therapeutic potential of these and other cells types is also discussed, and the various challenges that face satellite cell therapy are addressed.</p

    The AMPK/p27Kip1 Axis Regulates Autophagy/Apoptosis Decisions in Aged Skeletal Muscle Stem Cells

    No full text
    Summary: Skeletal muscle stem cell (MuSC) function declines with age and contributes to impaired muscle regeneration in older individuals. Acting through AMPK/p27Kip1, we have identified a pathway regulating the balance between autophagy, apoptosis, and senescence in aged MuSCs. While p27Kip1 is implicated in MuSC aging, its precise role and molecular mechanism have not been elucidated. Age-related MuSC dysfunction was associated with reduced autophagy, increased apoptosis, and hypophosphorylation of AMPK and its downstream target p27Kip1. AMPK activation or ectopic expression of a phosphomimetic p27Kip1 mutant was sufficient to suppress in vitro apoptosis, increase proliferation, and improve in vivo transplantation efficiency of aged MuSCs. Moreover, activation of the AMPK/p27Kip1 pathway reduced markers of cell senescence in aged cells, which was, in part, dependent on p27Kip1 phosphorylation. Thus, the AMPK/p27Kip1 pathway likely regulates the autophagy/apoptosis balance in aged MuSCs and may be a potential target for improving muscle regeneration in older individuals. : In this paper, White et al. show aged muscle stem cells have a reduction in AMPK/p27Kip1 signaling, resulting in decreased autophagy and susceptibility to apoptosis or senescence. The rescue of AMPK signaling in aged stem cells returns cellular function and regenerative capacity. These results show AMPK and related downstream mediators are viable targets to enhance aged muscle regeneration. Keywords: muscle stem cell, regeneration, autophagy, apoptosis, senescence, AMPK, p27Kip1, aging, caloric restriction, cell transplantatio
    corecore