300 research outputs found

    Simulating sparse Hamiltonians with star decompositions

    Full text link
    We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts for time t, this algorithm uses (d^2(d+log* N)||Ht||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||Ht||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.Comment: 11 pages. v2: minor correction

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page

    Hamiltonian Simulation Using Linear Combinations of Unitary Operations

    Get PDF
    We present a new approach to simulating Hamiltonian dynamics based on implementing linear combinations of unitary operations rather than products of unitary operations. The resulting algorithm has superior performance to existing simulation algorithms based on product formulas and, most notably, scales better with the simulation error than any known Hamiltonian simulation technique. Our main tool is a general method to nearly deterministically implement linear combinations of nearby unitary operations, which we show is optimal among a large class of methods.Comment: 18 pages, 3 figure
    • …
    corecore