300 research outputs found
Simulating sparse Hamiltonians with star decompositions
We present an efficient algorithm for simulating the time evolution due to a
sparse Hamiltonian. In terms of the maximum degree d and dimension N of the
space on which the Hamiltonian H acts for time t, this algorithm uses
(d^2(d+log* N)||Ht||)^{1+o(1)} queries. This improves the complexity of the
sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders,
which scales like (d^4(log* N)||Ht||)^{1+o(1)}. To achieve this, we decompose a
general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of
non-zero entries have the property that every connected component is a star,
and efficiently simulate each of these pieces.Comment: 11 pages. v2: minor correction
Quantum query complexity of minor-closed graph properties
We study the quantum query complexity of minor-closed graph properties, which
include such problems as determining whether an -vertex graph is planar, is
a forest, or does not contain a path of a given length. We show that most
minor-closed properties---those that cannot be characterized by a finite set of
forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To
establish this, we prove an adversary lower bound using a detailed analysis of
the structure of minor-closed properties with respect to forbidden topological
minors and forbidden subgraphs. On the other hand, we show that minor-closed
properties (and more generally, sparse graph properties) that can be
characterized by finitely many forbidden subgraphs can be solved strictly
faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the
quantum walk search framework and give improved upper bounds for several
subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
Hamiltonian Simulation Using Linear Combinations of Unitary Operations
We present a new approach to simulating Hamiltonian dynamics based on
implementing linear combinations of unitary operations rather than products of
unitary operations. The resulting algorithm has superior performance to
existing simulation algorithms based on product formulas and, most notably,
scales better with the simulation error than any known Hamiltonian simulation
technique. Our main tool is a general method to nearly deterministically
implement linear combinations of nearby unitary operations, which we show is
optimal among a large class of methods.Comment: 18 pages, 3 figure
- …