192 research outputs found

    Noncommutative Kn\"{o}rrer periodicity and noncommutative Kleinian singularities

    Full text link
    We establish a version of Kn\"{o}rrer's Periodicity Theorem in the context of noncommutative invariant theory. Namely, let AA be a left noetherian AS-regular algebra, let ff be a normal and regular element of AA of positive degree, and take B=A/(f)B=A/(f). Then there exists a bijection between the set of isomorphism classes of indecomposable non-free maximal Cohen-Macaulay modules over BB and those over (a noncommutative analog of) its second double branched cover (B#)#(B^\#)^\#. Our results use and extend the study of twisted matrix factorizations, which was introduced by the first three authors with Cassidy. These results are applied to the noncommutative Kleinian singularities studied by the second and fourth authors with Chan and Zhang.Comment: Numerous typos fixed, removed unnecessary finite order hypothesi

    Accuracy of ARGOS Locations of Pinnipeds at-Sea Estimated Using Fastloc GPS

    Get PDF
    Background: ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate.Methodology/Principal Findings: We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2&ndash;21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68th percentile ARGOS location errors as measured in this study were LC-30.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. Conclusions/Significance: The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.<br /

    Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins

    Get PDF
    The persistence of seagrass meadows reflects variation in factors that influence their productivity and consumption. Sea urchins (Amblypneustes pallidus) can over-graze seagrass (Amphibolis antarctica) to create sparse meadows in South Australia, but this effect is not observed in adjacent Posidonia sinuosa meadows despite greater densities of inhabiting urchins. To test the effect of urchin grazing on seagrass biomass, we elevated the density of urchins in meadows of A. antarctica and P. sinuosa and quantified seagrass decline. Urchins removed similar amounts of biomass from both seagrass species, but the loss of leaf meristems was 11-times greater in A. antarctica than in P. sinuosa. In a second experiment to assess the recovery of seagrass, we simulated urchin grazing by clipping seagrass to mimic impacts measured in the first experiment, as well as completely removing all above ground biomass in one treatment. Following simulated grazing, P. sinuosa showed a rapid trajectory toward recovery, while A. antarctica meadows continued to decline relative to control treatments. While both A. antarctica and P. sinuosa were susceptible to heavy grazing loss, consumption of the exposed meristems of A. antarctica appears to reduce its capacity to recover, which may increase its vulnerability to long-term habitat phase-shifts and associated cascading ecosystem changes. © 2013 Elsevier B.V.Owen W. Burnell, Sean D. Connell, Andrew D. Irving, Bayden D. Russel

    Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow

    Get PDF
    Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery

    Diversity and ecological guild analysis of the oil palm fungal microbiome across root, rhizosphere, and soil compartments

    Get PDF
    The rhizosphere microbiome is a major determinant of plant health, which can interact with the host directly and indirectly to promote or suppress productivity. Oil palm is one of the world’s most important crops, constituting over a third of global vegetable oil production. Currently there is little understanding of the oil palm microbiome and its contribution to plant health and productivity, with existing knowledge based almost entirely on culture dependent studies. We investigated the diversity and composition of the oil palm fungal microbiome in the bulk soil, rhizosphere soil, and roots of 2-, 18-, and 35-year old plantations in Selangor, Malaysia. The fungal community showed substantial variation between the plantations, accounting for 19.7% of community composition, with compartment (root, rhizosphere soil, and bulk soil), and soil properties (pH, C, N, and P) contributing 6.5 and 7.2% of community variation, respectively. Rhizosphere soil and roots supported distinct communities compared to the bulk soil, with significant enrichment of Agaricomycetes, Glomeromycetes, and Lecanoromycetes in roots. Several putative plant pathogens were abundant in roots in all the plantations, including taxa related to Prospodicola mexicana and Pleurostoma sp. The mycorrhizal status and dependency of oil palm has yet to be established, and using 18S rRNA primers we found considerable between-site variation in Glomeromycotinian community composition, accounting for 31.2% of variation. There was evidence for the selection of Glomeromycotinian communities in oil palm roots in the older plantations but compartment had a weak effect on community composition, accounting for 3.9% of variation, while soil variables accounted for 9% of community variation. While diverse Mucoromycotinian fungi were detected, they showed very low abundance and diversity within roots compared to bulk soil, and were not closely related to taxa which have been linked to fine root endophyte mycorrhizal morphology. Many of the fungal sequences showed low similarity to established genera, indicating the presence of substantial novel diversity with significance for plant health within the oil palm microbiome
    • …
    corecore