189 research outputs found

    Detection and characterization of deep water wave breaking using moderate incidence angle microwave backscatter from the sea surface

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1990The importance of wave breaking in both microwave remote sensing and air-sea interaction has led to this investigation of the utility of a Ku-Band CW Doppler scatterometer to detect and characterize wave breaking in the open ocean. Field and laboratory measurements by previous authors of microwave backscatter from sharp-crested and breaking waves have shown that these events can exhibit characteristic signatures in moderate incidence angle measurements of the radar cross-section (RCS) and Doppler spectrum. Specifically, breaking events have been associated with polarization independent sea spikes in the RCS accompanied by increased mean frequency and bandwidth of the Doppler spectrum. Simultaneous microwave, video, and environmental measurements were made during the SAXON experiment off Chesapeake Bay in the fall of 1988. The scatterometer was pointed upwind with an incidence angle of 45 degrees and an illumination area small compared to the wavelength of the dominant surface waves. An autocovariance estimation technique was used to produced time series of the RCS, mean Doppler frequency, and Doppler spectral bandwidth in real-time. The joint statistics of the microwave quantities indicative of breaking are used to investigate detection schemes for breaking events identified from the video recordings. The most successful scheme is based on thresholds in both the RCS and the Doppler bandwidth determined from joint distributions for breaking and non-breaking waves. Microwave events consisting of a sea spike in the RCS accompanied by a large bandwidth are associated with the steep forward face of waves in the early stages of breaking. The location of the illumination area with respect to the phase of the breaking wave, the stage of breaking development, and the orientation of an individual crest with respect to the antenna look-direction all influence the detect ability of a breaking event occurring in the vicinity of the radar spot. Since sea spikes tend to occur on the forward face of waves in the process of breaking, the whitecap associated with a given sea spike may occur after the crest of the wave responsible for the sea spike has passed the center of the illumination area. Approximately 70% of the waves which produce whitecaps within a distance of 5m of the bore sight location are successfully identified by a threshold-based detection scheme utilizing both RCS and bandwidth information. The sea spike statistics are investigated as functions of wave field parameters and friction velocity u*. For VV and HH polarization, the frequency of sea spike occurrence and the sea spike contribution to the mean RCS show an approximately cubic dependence on u*, which is consistent with theoretical modelling and various measures of whitecap coverage. The data also suggest that the average RCS of an individual sea spike is not dependent on u*. At high friction velocities (u*≈40-50cms-l), the contribution of sea spikes to the mean RCS is in the range of 5-10% for VV and 10-20% for HH. The wind speed dependence of the percentage of crests producing sea spikes is comparable to that of the fraction of breaking crests reported by previous authors. The percentage of wave crests producing sea spikes is found to vary approximately as (Re*)1.5, where Re* is a Reynolds number based on u* and the dominant surface wavelength. This result agrees with measurements of the degree of wave breaking by. previous authors and is shown to be consistent with a cubic dependence on u *. Models for the probability of wave breaking as a function of moments of the wave height spectrum are compared to our results. The Doppler frequency and bandwidth measurements are also used to inquire into the kinematics of the breaking process.This work was funded by grants from the MIT Sloan Basic Research Fund, the National Science Foundation (Physical Oceanography), and the Office of Naval Research (Physical Oceanography). Additional funding was provided by the National Aeronautics and Space Administration through the Graduate Student Researchers' Fellowship Program

    Effects of laboratory colonization on Bactrocera dorsalis (Diptera, Tephritidae) mating behaviour: 'what a difference a year makes'

    Get PDF
    Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time

    Vertical Boil Propagation from a Submerged Estuarine Sill

    Get PDF
    Surface disruptions by boils during strong tidal flows over a rocky sill were observed in thermal infrared imagery collected at the Snohomish River estuary in Washington State. Locations of boil disruptions and boil diameters at the surface were quantified and are used to test an idealized model of vertical boil propagation. The model is developed as a two-dimensional approximation of a three-dimensional vortex loop, and boil vorticity is derived from the flow shear over the sill. Predictions of boil disruption locations were determined from the modeled vertical velocity, the sill depth, and the over-sill velocity. Predictions by the vertical velocity model agree well with measured locations (rms difference 3.0 m) and improve by using measured velocity and shear (rms difference 1.8 m). In comparison, a boil-surfacing model derived from laboratory turbulent mixed-layer wakes agrees with the measurements only when stratification is insignificant

    Turbulent Kinetic Energy and Coherent Structures in a Tidal River

    Get PDF
    We investigate the relationship between turbulence statistics and coherent structures (CS) in an unstratified reach of the Snohomish River estuary using in situ velocity measurements and surface infrared (IR) imaging. Sequential IR images are used to estimate surface flow characteristics via a particle-image-velocimetry (PIV) technique, and are conditionally sampled to delineate the surface statistics of bottom-generated CS, or boils. In the water column, we find that turbulent kinetic energy (TKE) production exceeds dissipation near the bed but is less than dissipation in the midwater column and that TKE flux divergence closes a significant portion of the measured imbalance. The surface boundary leads to divergence in upwelling CS, and leads to the redistribution of vertical TKE to the horizontal. Very near the surface, statistical anisotropy is observed at length scales larger than the depth H (3–5 m), while boil-scale motions of O(1)m are nearly isotropic and exhibit a 25/3 turbulent cascade to smaller scales. Conditional sampling suggests that TKE dissipation in boils is approximately 2 times greater on average than dissipation in ambient flow. Similarly, surface boils are marked by significantly greater velocity variance, upwelling, divergence, and TKE flux divergence than ambient flow regions. Coherent structures and their surface manifestation, therefore, play an important role in the vertical transport of TKE and the water column distribution of dissipation, and are an important component of the TKE budget

    Reflect and Redefine: Deans’ Perspectives on the Positioning of IS within the Business School

    Get PDF
    Over the 12 years since the glory days of the dot com and Y2K phenomena at the turn of the last century, IS departments at many colleges and schools of business have suffered significant declines in student enrolments, elimination from core curricula, reduced faculty numbers, and overall a weakened strategic positioning within the business school. Recent AACSB faculty hiring and salary reports indicate that “CIS” is the only discipline which has seen an overall decline in faculty hiring over the past 10 years, in contrast with significant growth in all other disciplines. Many IS departments have been merged with other disciplines, or closed entirely. In contrast, however, a number of IS departments have continued to enjoy significant growth and success. This panel of five current/recent business school deans and members of the IS community will offer their perspectives on the strategic positioning of IS within the business school, and share their recommendations on what IS departments need to do to strengthen their positioning within the business school across the domains of teaching, research and relationships with the broader academic and business communities

    Remote Measurements of Tides and River Slope Using an Airborne Lidar Instrument

    Get PDF
    Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based tide curves agree to within a root-mean-square error of 0.21 m, and the lidar-based river slope estimate of 1.8 × 10−5 agrees well with the in situ–based estimate of 1.4 × 10−5 (4 mm km−1 difference). Lidar-based amplitude and phase estimates are within 10% and 8°, respectively, of their in situ counterparts throughout most of the estuary. Error analysis suggests that increased measurement accuracy and more transects are required to reduce the errors in estimates of tidal amplitude and phase. However, the results validate the use of airborne remote sensing to measure tides and suggest this approach can be used to systematically study water levels at a spatial density not possible with in situ gauges

    Sea surface temperature signatures of oceanic internal waves in low winds

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C06014, doi:10.1029/2006JC003947.In aerial surveys conducted during the Tropical Ocean–Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. Under conditions of weak winds and strong insolation (which favor formation of a diurnal warm layer), the data reveal a link between the spatially periodic SST fluctuations and subsurface temperature and velocity fluctuations associated with oceanic internal waves, suggesting that some mechanism involving the diurnal warm layer is responsible for the observed signal. Internal-wave signals in skin temperature very closely resemble temperature signals measured at a depth of about 20 cm, indicating that the observed internal-wave SST signal is not a result of modulation of the cool-skin effect. Numerical experiments using a one-dimensional upper ocean model support the notion that internal-wave heaving of the warm-layer base can produce alternating bands of relatively warm and cool SST through the combined effects of surface heating and modulation of wind-driven vertical shear.We gratefully acknowledge funding for this research from the Office of Naval Research through the CBLAST Departmental Research Initiative (grants N00014-01-1-0029, N00014-05-10090, N00014-01-1-0081, N00014-04-1-0110, N00014-05-1-0036, N00014-01-1-0080) and the Secretary of the Navy/Chief of Naval Operations Chair (grant N00014-99-1-0090)

    Use of low-pressure storage to improve the quality of tomatoes

    Get PDF
    Freshly harvested vine-ripened tomatoes (Solanum lycopersicum cv. Neang Pich) were stored at low pressure (4 kPa) at 10°C for 11 days with 100% RH. Fruit quality was examined upon removal and after being transferred to normal atmosphere (101 kPa) at 20°C for 3 days. Weight loss was significantly lower in fruits which were stored at low pressure (4 kPa) than in fruits that were stored at regular atmosphere (101 kPa) at 10°C. Fruits that were stored at low pressure (4 kPa) reduced calyx browning by 12.5%, and calyx rots by 16%, compared to fruits that were stored at regular atmosphere (101 kPa) at 10°C. Fruit firmness was not significantly different between fruits stored at low pressures (4 kPa) and the normal atmosphere (101 kPa), with an average firmness of 14 N after fruits were stored at 10°C for 11 days. There was no difference in the SSC/TA ratio. The results suggest that a low pressure of 4 kPa at 10°C has potential as an alternative, non-chemical postharvest treatment to improve tomato quality during storage

    Statistics of surface divergence and their relation to air-water gas transfer velocity

    Get PDF
    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence

    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address
    corecore