153 research outputs found

    Modelling DNA Origami Self-Assembly at the Domain Level

    Full text link
    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami

    Collective molecule formation in a degenerate Fermi gas via a Feshbach resonance

    Full text link
    We model collisionless collective conversion of a degenerate Fermi gas into bosonic molecules via a Feshbach resonance, treating the bosonic molecules as a classical field and seeding the pairing amplitudes with random phases. A dynamical instability of the Fermi sea against association into molecules initiates the conversion. The model qualitatively reproduces several experimental observations {[Regal et al., Nature {\bf 424}, 47 (2003)]}. We predict that the initial temperature of the Fermi gas sets the limit for the efficiency of atom-molecule conversion.Comment: 4 pages, 3 figures, 10+ references, accepted to PR

    Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells

    Get PDF
    Li-Fraumeni syndrome (LFS) patients harbor germ line mutations in the TP53 gene and are at increased risk of hormone receptor-positive breast cancers. Recently, elevated levels of aromatase, the rate-limiting enzyme for estrogen biosynthesis, were found in the breast tissue of LFS patients. Although p53 down-regulates aromatase expression, the underlying mechanisms are incompletely understood. In the present study, we found that LFS stromal cells expressed higher levels of Hsp90 ATPase activity and aromatase compared with wild-type stromal cells. Inhibition of Hsp90 ATPase suppressed aromatase expression. Silencing Aha1 (activator of Hsp90 ATPase 1), a co-chaperone of Hsp90 required for its ATPase activity, led to both inhibition of Hsp90 ATPase activity and reduced aromatase expression. In comparison with wild-type stromal cells, increased levels of the Hsp90 client proteins, HIF-1α, and PKM2 were found in LFS stromal cells. A complex comprised of HIF-1α and PKM2 was recruited to the aromatase promoter II in LFS stromal cells. Silencing either HIF-1α or PKM2 suppressed aromatase expression in LFS stromal cells. CP-31398, a p53 rescue compound, suppressed levels of Aha1, Hsp90 ATPase activity, levels of PKM2 and HIF-1α, and aromatase expression in LFS stromal cells. Consistent with these in vitro findings, levels of Hsp90 ATPase activity, Aha1, HIF-1α, PKM2, and aromatase were increased in the mammary glands of p53 null versus wild-type mice. PKM2 and HIF-1α were shown to co-localize in the nucleus of stromal cells of LFS breast tissue. Taken together, our results show that the Aha1-Hsp90-PKM2/HIF-1α axis mediates the induction of aromatase in LFS

    Synchronizing Sequencing Software to a Live Drummer

    Get PDF
    Copyright 2013 Massachusetts Institute of Technology. MIT allows authors to archive published versions of their articles after an embargo period. The article is available at

    Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis.

    Get PDF
    Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies

    p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling

    Get PDF
    The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (Hsp90), is a ligand-activated transcription factor that plays a role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke activates AhR signaling leading to increased transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to mutagens. Recently, p53 was found to regulate Hsp90 ATPase activity via effects on activator of Hsp90 ATPase (Aha1). It is possible, therefore, that AhR-dependent expression of CYP1A1 and CYP1B1 might be affected by p53 status. The main objective of this study was to determine whether p53 modulated AhR-dependent gene expression and PAH metabolism. Here, we show that silencing p53 led to elevated Aha1 levels, increased Hsp90 ATPase activity, and enhanced CYP1A1 and CYP1B1 expression. Overexpression of wild-type p53 suppressed levels of CYP1A1 and CYP1B1. The significance of Aha1 in mediating these p53-dependent effects was determined. Silencing of Aha1 led to reduced Hsp90 ATPase activity and downregulation of CYP1A1 and CYP1B1. In contrast, overexpressing Aha1 was associated with increased Hsp90 ATPase activity and elevated levels of CYP1A1 and CYP1B1. Using p53 heterozygous mutant epithelial cells from patients with Li-Fraumeni syndrome, we show that monoallelic mutation of p53 was associated with elevated levels of CYP1A1 and CYP1B1 under both basal conditions and following treatment with benzo[a]pyrene. Treatment with CP-31398, a p53 rescue compound, suppressed benzo[a]pyrene-mediated induction of CYP1A1 and CYP1B1 and the formation of DNA adducts. Collectively, our results suggest that p53 affects AhR-dependent gene expression, PAH metabolism, and possibly carcinogenesis

    Effects of tobacco smoke on gene expression and cellular pathways in a cellular model of oral leukoplakia

    Get PDF
    Abstract In addition to being causally linked to the formation of multiple tumor types, tobacco use has been associated with decreased efficacy of anticancer treatment and reduced survival time. A detailed understanding of the cellular mechanisms that are affected by tobacco smoke (TS) should facilitate the development of improved preventive and therapeutic strategies. We have investigated the effects of a TS extract on the transcriptome of MSK-Leuk1 cells, a cellular model of oral leukoplakia. Using Affymetrix HGU133 Plus 2 arrays, 411 differentially expressed probe sets were identified. The observed transcriptome changes were grouped according to functional information and translated into molecular interaction network maps and signaling pathways. Pathways related to cellular proliferation, inflammation, apoptosis, and tissue injury seemed to be perturbed. Analysis of networks connecting the affected genes identified specific modulated molecular interactions, hubs, and key transcription regulators. Thus, TS was found to induce several epidermal growth factor receptor (EGFR) ligands forming an EGFR-centered molecular interaction network, as well as several aryl hydrocarbon receptor-dependent genes, including the xenobiotic metabolizing enzymes CYP1A1 and CYP1B1. Notably, the latter findings in vitro are consistent with our parallel finding that CYP1A1 and CYP1B1 levels were increased in oral mucosa of smokers. Collectively, these results offer insights into the mechanisms underlying the procarcinogenic effects of TS and raise the possibility that inhibitors of EGFR or aryl hydrocarbon receptor signaling will prevent or delay the development of TS-related tumors. Moreover, the inductive effects of TS on xenobiotic metabolizing enzymes may help explain the reduced efficacy of chemotherapy, and suggest targets for chemopreventive agents in smokers

    Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice

    Get PDF
    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable to control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL-6 levels, expression of pro-inflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice, and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus non-obese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression

    What makes health impact assessments successful? Factors contributing to effectiveness in Australia and New Zealand

    Get PDF
    Background: While many guidelines explain how to conduct Health Impact Assessments (HIAs), less is known about the factors that determine the extent to which HIAs affect health considerations in the decision making process. We investigated which factors are associated with increased or reduced effectiveness of HIAs in changing decisions and in the implementation of policies, programs or projects. This study builds on and tests the Harris and Harris-Roxas' conceptual framework for evaluating HIA effectiveness, which emphasises context, process and output as key domains. Methods: We reviewed 55 HIA reports in Australia and New Zealand from 2005 to 2009 and conducted surveys and interviews for 48 of these HIAs. Eleven detailed case studies were undertaken using document review and stakeholder interviews. Case study participants were selected through purposeful and snowball sampling. The data were analysed by thematic content analysis. Findings were synthesised and mapped against the conceptual framework. A stakeholder forum was utilised to test face validity and practical adequacy of the findings. Results: We found that some features of HIA are essential, such as the stepwise but flexible process, and evidence based approach. Non-essential features that can enhance the impact of HIAs include capacity and experience; 'right person right level'; involvement of decision-makers and communities; and relationships and partnerships. There are contextual factors outside of HIA such as fit with planning and decision making context, broader global context and unanticipated events, and shared values and goals that may influence a HIA. Crosscutting factors include proactive positioning, and time and timeliness. These all operate within complex open systems, involving multiple decision-makers, levels of decision-making, and points of influence. The Harris and Harris-Roxas framework was generally supported. Conclusion: We have confirmed previously identified factors influencing effectiveness of HIA and identified new factors such as proactive positioning. Our findings challenge some presumptions about 'right' timing for HIA and the rationality and linearity of decision-making processes. The influence of right timing on decision making needs to be seen within the context of other factors such as proactive positioning. This research can help HIA practitioners and researchers understand and identify what can be enhanced within the HIA process. Practitioners can adapt the flexible HIA process to accommodate the external contextual factors identified in this report

    Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis

    Get PDF
    Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies
    corecore