87 research outputs found

    Abyssal hills: influence of topography on benthic foraminiferal assemblages

    Get PDF
    Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-?m fraction of Megacorer samples (0–1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200–500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology

    Relationship between ‘live’ and dead benthic foraminiferal assemblages in the abyssal NE Atlantic

    Get PDF
    Dead foraminiferal assemblages within the sediment mixed layer provide an integrated, time-averaged view of the foraminiferal fauna, while the relationship between dead and live assemblages reflects the population dynamics of different species together with taphonomic processes operating over the last few hundred years. Here, we analysed four samples for ‘live’ (Rose-Bengal-stained) and dead benthic foraminifera (0–1 cm sediment layer, >150 ?m) from four sites in the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO; NE Atlantic, 4850 m water depth). Two sites were located on abyssal hills and two on the adjacent abyssal plain. Our results indicate that the transition from live to dead benthic foraminiferal assemblages involved a dramatic loss of delicate agglutinated and organic-walled tests (e.g. Lagenammina, Nodellum, Reophax) with poor preservation potential, and to a lesser extent that of some relatively fragile calcareous tests (mostly miliolids), possibly a result of dissolution. Other processes, such as the transport of tests by bottom currents and predation, are unlikely to have substantially altered the composition of dead faunas. Positive live to dead ratios suggest that some species (notably Epistominella exigua and Bolivina spathulata) may have responded to recent phytodetritus input. Although the composition of live assemblages seemed to be influenced by seafloor topography (abyssal hills vs. plain), no such relation was found for dead assemblages. We suggest that PAP-SO fossil assemblages are likely to be comparable across topographically contrasting sites, and dominated by calcareous and some robust agglutinated forms with calcitic cement (e.g. Eggerella)

    Transcriptional profiling of vaccine-induced immune responses in humans and non-human primates

    Get PDF
    There is an urgent need for pre-clinical and clinical biomarkers predictive of vaccine immunogenicity, efficacy and safety to reduce the risks and costs associated with vaccine development. Results emerging from immunoprofiling studies in non-human primates and humans demonstrate clearly that (i) type and duration of immune memory are largely determined by the magnitude and complexity of the innate immune signals and (ii) genetic signatures highly predictive of B-cell and T-cell responses can be identified for specific vaccines. For vaccines with similar composition, e.g. live attenuated viral vaccines, these signatures share common patterns. Signatures predictive of vaccine efficacy have been identified in a few experimental challenge studies. This review aims to give an overview of the current literature on immunoprofiling studies in humans and also presents some of our own data on profiling of licensed and experimental vaccines in non-human primates

    Virialization of high redshift dark matter haloes

    Full text link
    We present results of a study of the virial state of high redshift dark matter haloes in an N-body simulation. We find that the majority of collapsed, bound haloes are not virialized at any redshift slice in our study (z=156z=15-6) and have excess kinetic energy. At these redshifts, merging is still rampant and the haloes cannot strictly be treated as isolated systems. To assess if this excess kinetic energy arises from the environment, we include the surface pressure term in the virial equation explicitly and relax the assumption that the density at the halo boundary is zero. Upon inclusion of the surface term, we find that the haloes are much closer to virialization, however, they still have some excess kinetic energy. We report trends of the virial ratio including the extra surface term with three key halo properties: spin, environment, and concentration. We find that haloes with closer neighbors depart more from virialization, and that haloes with larger spin parameters do as well. We conclude that except at the lowest masses (M < 10^6 \Msun), dark matter haloes at high redshift are not fully virialized. This finding has interesting implications for galaxy formation at these high redshifts, as the excess kinetic energy will impact the subsequent collapse of baryons and the formation of the first disks and/or baryonic structures.Comment: 5 pages, Accepted to MNRA

    Angular momentum and clustering properties of early dark matter halos

    Full text link
    In this paper we study the angular momentum properties of simulated dark matter halos at high redshift that likely host the first stars in the Universe. Calculating the spin distributions of these 10^6 - 10^7 \Msun halos in redshift slices from z=156z = 15 - 6, we find that they are well fit by a log-normal distribution as is found for lower redshift and more massive halos in earlier work. We find that both the mean value of the spin and dispersion are largely unchanged with redshift for all halos. Our key result is that subsamples of low and high spin 10^6 \Msun and 10^7 \Msun halos show difference in clustering strength. In both mass bins, higher spin halos are more strongly clustered in concordance with a tidal torquing picture for the growth of angular momentum in dark matter halos in the CDM paradigm.Comment: 6 pages, 3 figures. Accepted MNRA

    Autonomous marine environmental monitoring: Application in decommissioned oil fields

    Get PDF
    Hundreds of Oil & Gas Industry structures in the marine environment are approaching decommissioning. In most areas decommissioning operations will need to be supported by environmental assessment and monitoring, potentially over the life of any structures left in place. This requirement will have a considerable cost for industry and the public. Here we review approaches for the assessment of the primary operating environments associated with decommissioning — namely structures, pipelines, cuttings piles, the general seabed environment and the water column — and show that already available marine autonomous systems (MAS) offer a wide range of solutions for this major monitoring challenge. Data of direct relevance to decommissioning can be collected using acoustic, visual, and oceanographic sensors deployed on MAS. We suggest that there is considerable potential for both cost savings and a substantial improvement in the temporal and spatial resolution of environmental monitoring. We summarise the trade-offs between MAS and current conventional approaches to marine environmental monitoring. MAS have the potential to successfully carry out much of the monitoring associated with decommissioning and to offer viable alternatives where a direct match for the conventional approach is not possible

    Big in the benthos: future change of seafloor community biomass in a global, body size-resolved model

    Get PDF
    Deep-water benthic communities in the ocean are almost wholly dependent on near-surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size-resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size-classes of metazoans, successively doubling in mass from approximately 1μg to 28mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (-6.1%), and driven by changes in pelagic remineralisation with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep-sea communities experience a substantial decline (-32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development

    Integrating ocean observations across body‐size classes to deliver benthic invertebrate abundance and distribution information

    Get PDF
    Invertebrate animals living at the seafloor make up a prominent component of life globally, spanning 10 orders of magnitude in body size over 71% of Earth's surface. However, integrating information across sizes and sampling methodologies has limited our understanding of the influence of natural variation, climate change and human activity. Here, we outline maturing practices that can underpin both the feasibility and impact of establishing Benthic Invertebrate Abundance and Distribution as a Global Ocean Observing System—Essential Ocean Variable, including: (1) quantifying individual body size, (2) identifying the well-quantified portions of sampled body-size spectra, (3) taking advantage of (semi-)automated information processing, (4) application of metadata standards such as Darwin Core, and (5) making data available through internationally recognized access points. These practices enable broader-scale analysis supporting research and sustainable development, such as assessments of indicator taxa, biodiversity, biomass, and the modeling of carbon stocks and flows that are contiguous over time and space

    Spin and structural halo properties at high redshift in a LCDM Universe

    Full text link
    In this paper, we examine in detail the key structural properties of high redshift dark matter haloes as a function of their spin parameter. We perform and analyze high resolution cosmological simulations of the formation of structure in a LCDM Universe. We study the mass function, ellipticities, shapes, density profiles, rotation curves and virialization for a large sample of dark matter haloes from z = 15 - 6. We also present detailed convergence tests for individual haloes. We find that high spin haloes have stronger clustering strengths (up to 25%) at all mass and redshift ranges at these early epochs. High redshift spherical haloes are also up to 50% more clustered than aspherical haloes. High spin haloes at these redshifts are also preferentially found in high density environments, and have more neighbors than their low spin counterparts. We report a systematic offset in the peak of the circular velocity curves for high and low spin haloes of the same mass. Therefore, estimating halo masses without knowledge of the spin, using only the circular velocity can yield errors of up to 40%. The strong dependence of key structural properties on spin that we report here likely have important implications for studies of star formation and feedback from these galaxies.Comment: 14 pages, 10 figures. Accepted to MNRAS
    corecore