9,823 research outputs found

    Auscultating heart and breath sounds through patients’ gowns: who does this and does it matter?

    Get PDF
    Background Doctors are taught to auscultate with the stethoscope applied to the skin, but in practice may be seen applying the stethoscope to the gown. Objectives To determine how often doctors auscultate heart and breath sounds through patients’ gowns, and to assess the impact of this approach on the quality of the sounds heard. Methods A sample of doctors in the west of Scotland were sent an email in 2014 inviting them to answer an anonymous questionnaire about how they auscultated heart and breath sounds. Normal heart sounds from two subjects were recorded through skin, through skin and gown, and through skin, gown and dressing gown. These were played to doctors, unaware of the origin of each recording, who completed a questionnaire about the method and quality of the sounds they heard. Results 206 of 445 (46%) doctors completed the questionnaire. 124 (60%) stated that they listened to patients’ heart sounds, and 156 (76%) to patients’ breath sounds, through patients’ gowns. Trainees were more likely to do this compared with consultants (OR 3.39, 95% CI 1.74 to 6.65). Doctors of all grades considered this practice affected the quality of the sounds heard. 32 doctors listened to the recorded heart sounds. 23 of the 64 (36%) skin and 23 of the 64 (36%) gown recordings were identified. The majority of doctors (74%) could not differentiate between skin or gown recordings, but could tell them apart from the double layer recordings (p=0.02). Trainees were more likely to hear artefactual added sounds (p=0.04). Conclusions Many doctors listen to patients’ heart and breath sounds through hospital gowns, at least occasionally. In a short test, most doctors could not distinguish between sounds heard through a gown or skin. Further work is needed to determine the impact of this approach to auscultation on the identification of murmurs and added sounds

    The photochemistry and photophysics of a series of alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines

    Get PDF
    Photophysical and photochemical measurements have been made on a series of novel alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines for which the synthesis is outlined. Fluorescence quantum yields and lifetimes, triplet quantum yields and lifetimes and singlet delta oxygen quantum yields were measured in 1% v/v pyridine in toluene. The effects of varying central atom and addition of alkyl substituents relative to unsubstituted parent molecules, zinc phthalocyanine (ZnPc) and silicon phthalocyanine (SiPc), are discussed. All phthalocyanines studied exhibit absorption and emission maxima in the region of 680–750 nm with molar absorptivity of the Q-band 105 M−1 cm−1. The series of compounds also exhibited triplet quantum yields of 0.65–0.95 and singlet oxygen quantum yields of 0.49–0.93

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Get PDF
    [Abridged] Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets.Comment: 37 pages plus appendices, 15 figures; first two authors contributed equally to this work; forecasting tool available at http://turkey.lbl.gov. v4: matches version published in JCAP (with extended dark energy constraints

    Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry

    Get PDF
    A novel range-resolved interferometric signal processing technique that uses sinusoidal optical frequency modulation is applied to multi-surface vibrometry, demonstrating simultaneous optical measurements of vibrations on two surfaces using a single, collimated laser beam, with a minimum permissible distance of 3.5 cm between surfaces. The current system, using a cost-effective laser diode and a fibre-coupled, downlead insensitive setup, allows an interferometric fringe rate of up to 180 kHz to be resolved with typical displacement noise levels of 8 pm Hz-0.5. In this paper, the system is applied to vibrometry measurements of a table-top cryostat, with concurrent measurements of the optical widow and the sample holder inside. This allows the separation of common-mode vibrations of the whole cryostat from differential vibrations between the window and the sample holder.EPSR

    The Economic Value of Irrigation in the Texas Panhandle

    Get PDF
    The Texas Panhandle relies largely on the Ogallala Aquifer for access to water for irrigated agricultural production. With current pumping rates and slow recharge rates, the aquifer will at some point in the future no longer be an economically viable source of water for agriculture. The objective of this study is to estimate the value of irrigated agriculture to the region. A hypothetical policy restriction is imposed which assumes a one hundred percent conversion to dryland agriculture. The study estimates the economic impact of such a change on producer income and the resulting socioeconomic impacts on communities in the region.economic impacts, IMPLAN, irrigated production, Ogallala Aquifer, water policy, Community/Rural/Urban Development, Environmental Economics and Policy, Q18, Q32, Q38,
    corecore