479 research outputs found

    Thermodynamically stable lithium silicides and germanides from density-functional theory calculations

    Full text link
    Density-functional-theory (DFT) calculations have been performed on the Li-Si and Li-Ge systems. Lithiated Si and Ge, including their metastable phases, play an important technological r\^ole as Li-ion battery (LIB) anodes. The calculations comprise structural optimisations on crystal structures obtained by swapping atomic species to Li-Si and Li-Ge from the X-Y structures in the International Crystal Structure Database, where X={Li,Na,K,Rb,Cs} and Y={Si,Ge,Sn,Pb}. To complement this at various Li-Si and Li-Ge stoichiometries, ab initio random structure searching (AIRSS) was also performed. Between the ground-state stoichiometries, including the recently found Li17_{17}Si4_{4} phase, the average voltages were calculated, indicating that germanium may be a safer alternative to silicon anodes in LIB, due to its higher lithium insertion voltage. Calculations predict high-density Li1_1Si1_1 and Li1_1Ge1_1 P4/mmmP4/mmm layered phases which become the ground state above 2.5 and 5 GPa respectively and reveal silicon and germanium's propensity to form dumbbells in the Lix_xSi, x=2.33βˆ’3.25x=2.33-3.25 stoichiometry range. DFT predicts the stability of the Li11_{11}Ge6_6 CmmmCmmm, Li12_{12}Ge7_7 PnmaPnma and Li7_7Ge3_3 P3212P32_12 phases and several new Li-Ge compounds, with stoichiometries Li5_5Ge2_2, Li13_{13}Ge5_5, Li8_8Ge3_3 and Li13_{13}Ge4_4.Comment: 10 pages, 5 figure

    Time Evolution and Deterministic Optimisation of Correlator Product States

    Get PDF
    We study a restricted class of correlator product states (CPS) for a spin-half chain in which each spin is contained in just two overlapping plaquettes. This class is also a restriction upon matrix product states (MPS) with local dimension 2n2^n (nn being the size of the overlapping regions of plaquettes) equal to the bond dimension. We investigate the trade-off between gains in efficiency due to this restriction against losses in fidelity. The time-dependent variational principle formulated for these states is numerically very stable. Moreover, it shows significant gains in efficiency compared to the naively related matrix product states - the evolution or optimisation scales as 23n2^{3n} for the correlator product states versus 24n2^{4n} for the unrestricted matrix product state. However, much of this advantage is offset by a significant reduction in fidelity. Correlator product states break the local Hilbert space symmetry by the explicit selection of a local basis. We investigate this dependence in detail and formulate the broad principles under which correlator product states may be a useful tool. In particular, we find that scaling with overlap/bond order may be more stable with correlator product states allowing a more efficient extraction of critical exponents - we present an example in which the use of correlator product states is several orders of magnitude quicker than matrix product states.Comment: 19 pages, 14 figure

    F17RS SGR No. 17 (Coaxial Cables)

    Get PDF
    A RESOLUTION To urge and request the Residence Hall Association (RHA) to provide coaxial cables for residents living in the Residence Hall

    Reporting of conflicts of interest in oral presentations at medical conferences : a delegate-based prospective observational study

    Get PDF
    Β© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.Peer reviewedPublisher PD

    Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction

    Full text link
    We have studied hydrogen/lithium complexes in crystalline silicon using density-functional-theory methods and the ab initio random structure searching (AIRSS) method for predicting structures. A method based on the Maxwell construction and convex hull diagrams is introduced which gives a graphical representation of the relative stabilities of point defects in a crystal and enables visualization of the changes in stability when the chemical potentials are altered. We have used this approach to study lithium and hydrogen impurities in silicon, which models aspects of the anode material in the recently-suggested lithium-ion batteries. We show that hydrogen may play a role in these anodes, finding that hydrogen atoms bind to three-atom lithium clusters in silicon, forming stable {H,3Li} and {2H,3Li} complexes, while the {H,2Li} complex is almost stable.Comment: (5 pages, 4 figures

    Lithiation of silicon via lithium Zintl-defect complexes

    Get PDF
    An extensive search for low-energy lithium defects in crystalline silicon using density-functional-theory methods and the ab initio random structure searching (AIRSS) method shows that the four-lithium-atom substitutional point defect is exceptionally stable. This defect consists of four lithium atoms with strong ionic bonds to the four under-coordinated atoms of a silicon vacancy defect, similar to the bonding of metal ions in Zintl phases. This complex is stable over a range of silicon environments, indicating that it may aid amorphization of crystalline silicon and form upon delithiation of the silicon anode of a Li-ion rechargeable battery.Comment: 4 pages, 3 figure

    Timeliness and content of retraction notices for publications by a single research group

    Get PDF
    Funding The study received no specific funding. MB is the recipient of an HRC Clinical Practitioner Fellowship. The Health Services Research Unit is funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The authors are independent of the HRC. The HRC had no role in study design, the collection, analysis, and interpretation of data, the writing of the article, or the decision to submit it for publication.Peer reviewedPostprin

    Should adults take vitamin D supplements to prevent disease?

    Get PDF
    Funding: Funded by the Health Research Council (HRC) of New Zealand. The authors are independent of the HRC. The HRC had no role in study design, the collection, analysis, and interpretation of data,Peer reviewe
    • …
    corecore