156 research outputs found

    Public health and unconventional oil and gas extraction including fracking: Global lessons from a Scottish government review

    Get PDF
    Unconventional oil and gas extraction (UOGE) including fracking for shale gas is underway in North America on a large scale, and in Australia and some other countries. It is viewed as a major source of global energy needs by proponents. Critics consider fracking and UOGE an immediate and long-term threat to global, national, and regional public health and climate. Rarely have governments brought together relatively detailed assessments of direct and indirect public health risks associated with fracking and weighed these against potential benefits to inform a national debate on whether to pursue this energy route. The Scottish government has now done so in a wide-ranging consultation underpinned by a variety of reports on unconventional gas extraction including fracking. This paper analyses the Scottish government approach from inception to conclusion, and from procedures to outcomes. The reports commissioned by the Scottish government include a comprehensive review dedicated specifically to public health as well as reports on climate change, economic impacts, transport, geology, and decommissioning. All these reports are relevant to public health, and taken together offer a comprehensive review of existing evidence. The approach is unique globally when compared with UOGE assessments conducted in the USA, Australia, Canada, and England. The review process builds a useful evidence base although it is not without flaws. The process approach, if not the content, offers a framework that may have merits globally

    Health Impact Assessments, Regulation, and the Unconventional Gas Industry in the UK: Exploiting Resources, Ideology, and Expertise?

    Get PDF
    Health impact assessments (HIAs) across the globe may be used by governments and industries to secure approval for unconventional gas extraction developments. HIA is an umbrella term that covers an array of health review and assessment practices, ranging from the very general to quite specific and technical health studies. Our concern in this paper is principally with the specialist end of the HIA continuum and particularly its application to unconventional gas extraction in the UK. We outline the context within which HIAs in unconventional gas extraction may be conducted. We then explain what HIAs may do. HIAs are often commissioned from consultancy companies to assess unconventional gas extraction project risks and benefits and propose mitigation measures. Communities can rarely afford HIAs in the planning process and may consider them biased when commissioned by vested interests. The oil and gas industry uses these techniques for its own ends. Hiring experts, be they specialist consultants, researchers, lobbyists, ex-government officials, or regulators, to influence planning and regulation is a well-tried tactic and structural advantage exploited by industry in seeking license to operate. Equitable and ethical HIA principles are urgently needed in the UK in relation to unconventional gas to secure the integrity and probity of the emerging regulatory system and address concerns regarding unregulated practitioners

    Lagging and Flagging: Air Pollution, Shale Gas Exploration and the Interaction of Policy, Science, Ethics and Environmental Justice in England

    Get PDF
    The science on the effects of global climate change and air pollution on morbidity and mortality is clear and debate now centres around the scale and precise contributions of particular pollutants. Sufficient data existed in recent decades to support the adoption of precautionary public health policies relating to fossil fuels including shale exploration. Yet air quality and related public health impacts linked to ethical and environmental justice elements are often marginalized or missing in planning and associated decision making. Industry and government policies and practices, laws and planning regulations lagged well behind the science in the United Kingdom. This paper explores the reasons for this and what shaped some of those policies. Why did shale gas policies in England fail to fully address public health priorities and neglect ethical and environmental justice concerns. To answer this question, an interdisciplinary analysis is needed informed by a theoretical framework of how air pollution and climate change are largely discounted in the complex realpolitik of policy and regulation for shale gas development in England. Sources, including official government, regulatory and planning documents, as well as industry and scientific publications are examined and benchmarked against the science and ethical and environmental justice criteria. Further, our typology illustrates how the process works drawing on an analysis of official policy documents and statements on planning and regulatory oversight of shale exploration in England, and material from industry and their consultants relating to proposed shale oil and gas development. Currently the oil, gas and chemical industries in England continue to dominate and influence energy and feedstock-related policy making to the detriment of ethical and environmental justice decision making with significant consequences for public health

    The U.K.'s "Dash for Gas" A Rapid Evidence Assessment of Fracking for Shale Gas, Regulation and Public Health

    Get PDF
    The evidence on public health regulation of the unconventional gas extraction (fracking) industry was examined using a rapid evidence assessment of fifteen case studies from multiple countries. They included scientific and academic papers, professional reports, government agency reports, industry and industry-funded reports, and a nongovernment organization report. Each case study review was structured to address strengths and weaknesses of the publication in relation to our research questions. Some case studies emphasized inherent industry short-, medium-, and long-term dangers to public health directly and through global climate change impacts. Other case studies argued that fracking could be conducted safelyassumingindustry best practice, “robust” regulation, and mitigation, but the evidence base for such statements proved generally sparse. U.K. regulators’ own assessments on fracking regulation are also evaluated. The existing evidence points to the necessity of a precautionary approach to protect public health from unconventional gas extraction development

    ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?

    Get PDF
    Background: Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. Results: Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5′ end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of −2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5′ end of the region of enhanced synonymous site conservation in ASXL2. Conclusions: Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF

    Effects of creatine monohydrate timing on resistance training adaptations and body composition after 8 weeks in male and female collegiate athletes

    Get PDF
    Background: Limited research is available on the potential impact of creatine monohydrate administration before or after workouts among athletes. This study aimed to investigate the effects of pre- vs. post-exercise creatine monohydrate supplementation on resistance training adaptations and body composition. Methods: In a randomized, double-blind, placebo-controlled, parallel design, 34 healthy resistance-trained male and female athletes were randomly assigned and matched according to fat free mass to consume a placebo, or 5-g dose of creatine monohydrate within 1 h before training, or within 1 h after training for 8 weeks, while completing a weekly resistance training program. Participants co-ingested 25-gram doses of both whey protein isolate and maltodextrin along with each assigned supplement dose. Body composition, muscular strength, and endurance, along with isometric mid-thigh pull were assessed before and after the 8-week supplementation period. A 3 × 2 mixed factorial (group x time) ANOVA with repeated measures on time were used to evaluate differences. Results: All groups experienced similar and statistically significant increases in fat free mass (+1.34 ± 3.48 kg, p = 0.04), upper (+2.21 ± 5.69 kg, p = 0.04) and lower body strength (+7.32 ± 10.01 kg, p \u3c 0.001), and decreases in body mass (−1.09 ± 2.71 kg, p = 0.03), fat mass (−2.64 ± 4.16 kg, p = 0.001), and percent body fat (−2.85 ± 4.39 kg, p \u3c 0.001). Conclusions: The timing of creatine monohydrate did not exert any additional influence over the measured outcomes

    Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice

    Get PDF
    The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N = 10) or air (Control, N = 9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (p < 0.05) and beta (p < 0.001) diversity, with a notable decrease in alpha diversity in CIE. These results demonstrate that CIE exposure markedly alters the gut microbiota in mice. Significant increases in genus Alistipes (p < 0.001) and significant reductions in genra Clostridium IV and XIVb (p < 0.001), Dorea (p < 0.01), and Coprococcus (p < 0.01) were seen between CIE mice and Control. These findings support the viability of the CIE method for studies investigating the microbiota-gut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress
    corecore