27 research outputs found

    Single Day Construction of Multigene Circuits with 3G Assembly

    Get PDF
    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly’s ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit

    Quantitative characterization of random partitioning in the evolution of plasmid-encoded traits

    Get PDF
    Plasmids are found across bacteria, archaea, and eukaryotes and play an important role in evolution. Plasmids exist at different copy numbers, the number of copies of the plasmid per cell, ranging from a single plasmid per cell to hundreds of plasmids per cell. This feature of a copy number greater than one can lead to a population of plasmids within a single cell that are not identical clones of one another, but rather have individual mutations that make a given plasmid unique. During cell division, this population of plasmids is partitioned into the two daughter cells, resulting in a random distribution of different plasmid variants in each daughter. In this study, we use stochastic simulations to investigate how random plasmid partitioning compares to a perfect partitioning model. Our simulation results demonstrate that random plasmid partitioning accelerates mutant allele fixation when the allele is beneficial and the selection is in an additive or recessive regime where increasing the copy number of the beneficial allele results in additional benefit for the host. This effect does not depend on the size of the benefit conferred or the mutation rate, but is magnified by increasing plasmid copy number

    Fluorescent Calcium Imaging and Subsequent In Situ Hybridization for Neuronal Precursor Characterization in Xenopus laevis

    Get PDF
    Spontaneous intracellular calcium activity can be observed in a variety of cell types and is proposed to play critical roles in a variety of physiological processes. In particular, appropriate regulation of calcium activity patterns during embryogenesis is necessary for many aspects of vertebrate neural development, including proper neural tube closure, synaptogenesis, and neurotransmitter phenotype specification. While the observation that calcium activity patterns can differ in both frequency and amplitude suggests a compelling mechanism by which these fluxes might transmit encoded signals to downstream effectors and regulate gene expression, existing population-level approaches have lacked the precision necessary to further explore this possibility. Furthermore, these approaches limit studies of the role of cell-cell interactions by precluding the ability to assay the state of neuronal determination in the absence of cell-cell contact. Therefore, we have established an experimental workflow that pairs time-lapse calcium imaging of dissociated neuronal explants with a fluorescence in situ hybridization assay, allowing the unambiguous correlation of calcium activity pattern with molecular phenotype on a single-cell level. We were successfully able to use this approach to distinguish and characterize specific calcium activity patterns associated with differentiating neural cells and neural progenitor cells, respectively; beyond this, however, the experimental framework described in this article could be readily adapted to investigate correlations between any time-series activity profile and expression of a gene or genes of interest

    Single Day Construction of Multigene Circuits with 3G Assembly

    Get PDF
    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly’s ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit

    Quantitative characterization of random partitioning in the evolution of plasmid-encoded traits

    Get PDF
    Plasmids are found across bacteria, archaea, and eukaryotes and play an important role in evolution. Plasmids exist at different copy numbers, the number of copies of the plasmid per cell, ranging from a single plasmid per cell to hundreds of plasmids per cell. This feature of a copy number greater than one can lead to a population of plasmids within a single cell that are not identical clones of one another, but rather have individual mutations that make a given plasmid unique. During cell division, this population of plasmids is partitioned into the two daughter cells, resulting in a random distribution of different plasmid variants in each daughter. In this study, we use stochastic simulations to investigate how random plasmid partitioning compares to a perfect partitioning model. Our simulation results demonstrate that random plasmid partitioning accelerates mutant allele fixation when the allele is beneficial and the selection is in an additive or recessive regime where increasing the copy number of the beneficial allele results in additional benefit for the host. This effect does not depend on the size of the benefit conferred or the mutation rate, but is magnified by increasing plasmid copy number

    Transcriptome of Neonatal PreBotzinger Complex Neurones in Dbx1 Reporter Mice

    Get PDF
    We sequenced the transcriptome of brainstem interneurons in the specialized respiratory rhythmogenic site dubbed preBotzinger Complex (preBotC) from newborn mice. To distinguish molecular characteristics of the core oscillator we compared preBotC neurons derived from Dbx1-expressing progenitors that are respiratory rhythmogenic to neighbouring non-Dbx1-derived neurons, which support other respiratory and non-respiratory functions. Results in three categories are particularly salient. First, Dbx1 preBotC neurons express kappa-opioid receptors in addition to mu-opioid receptors that heretofore have been associated with opiate respiratory depression, which may have clinical applications. Second, Dbx1 preBotC neurons express the hypoxia-inducible transcription factor Hif1a at levels three-times higher than non-Dbx1 neurons, which links core rhythmogenic microcircuits to O-2-related chemosensation for the first time. Third, we detected a suite of transcription factors including Hoxa4 whose expression pattern may define the rostral preBotC border, Pbx3 that may influence ipsilateral connectivity, and Pax8 that may pertain to a ventrally-derived subset of Dbx1 preBotC neurons. These data establish the transcriptomic signature of the core respiratory oscillator at a perinatal stage of development

    Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development

    Get PDF
    The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Fluorescent Calcium Imaging and Subsequent In Situ Hybridization for Neuronal Precursor Characterization in Xenopus laevis

    Get PDF
    Spontaneous intracellular calcium activity can be observed in a variety of cell types and is proposed to play critical roles in a variety of physiological processes. In particular, appropriate regulation of calcium activity patterns during embryogenesis is necessary for many aspects of vertebrate neural development, including proper neural tube closure, synaptogenesis, and neurotransmitter phenotype specification. While the observation that calcium activity patterns can differ in both frequency and amplitude suggests a compelling mechanism by which these fluxes might transmit encoded signals to downstream effectors and regulate gene expression, existing population-level approaches have lacked the precision necessary to further explore this possibility. Furthermore, these approaches limit studies of the role of cell-cell interactions by precluding the ability to assay the state of neuronal determination in the absence of cell-cell contact. Therefore, we have established an experimental workflow that pairs time-lapse calcium imaging of dissociated neuronal explants with a fluorescence in situ hybridization assay, allowing the unambiguous correlation of calcium activity pattern with molecular phenotype on a single-cell level. We were successfully able to use this approach to distinguish and characterize specific calcium activity patterns associated with differentiating neural cells and neural progenitor cells, respectively; beyond this, however, the experimental framework described in this article could be readily adapted to investigate correlations between any time-series activity profile and expression of a gene or genes of interest

    A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series

    Get PDF
    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features
    corecore