1,045 research outputs found

    All quiet on the neuronal front: NMDA receptor inhibition by prion protein

    Get PDF
    The normal function of the prion protein (PrP)—the causative agent of mad cow or prion disease—has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551–565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-D-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis

    Daily Timed Sexual Interaction Induces Moderate Anticipatory Activity in Mice

    Get PDF
    Anticipation of resource availability is a vital skill yet it is poorly understood in terms of neuronal circuitry. Rodents display robust anticipatory activity in the several hours preceding timed daily access to food when access is limited to a short temporal duration. We tested whether this anticipatory behavior could be generalized to timed daily social interaction by examining if singly housed male mice could anticipate either a daily novel female or a familiar female. We observed that anticipatory activity was moderate under both conditions, although both a novel female partner and sexual experience are moderate contributing factors to increasing anticipatory activity. In contrast, restricted access to running wheels did not produce any anticipatory activity, suggesting that an increase in activity during the scheduled access time was not sufficient to induce anticipation. To tease apart social versus sexual interaction, we tested the effect of exposing singly housed female mice to a familiar companion female mouse daily. The female mice did not show anticipatory activity for restricted female access, despite a large amount of social interaction, suggesting that daily timed social interaction between mice of the same gender is insufficient to induce anticipatory activity. Our study demonstrates that male mice will show anticipatory activity, albeit inconsistently, for a daily timed sexual encounter

    Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation

    Get PDF
    When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    Get PDF
    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions

    Morphological Biosignatures and the Search for Life on Mars

    Get PDF
    This report provides a rationale for the advances in instrumentation and understanding needed to assess claims of ancient and extraterrestrial life made on the basis of morphological biosignatures. Morphological biosignatures consist of bona fide microbial fossils as well as microbially influenced sedimentary structures. To be recognized as evidence of life, microbial fossils must contain chemical and structural attributes uniquely indicative of microbial cells or cellular or extracellular processes. When combined with various research strategies, high-resolution instruments can reveal such attributes and elucidate how morphological fossils form and become altered, thereby improving the ability to recognize them in the geological record on Earth or other planets. Also, before fossilized microbially influenced sedimentary structures can provide evidence of life, criteria to distinguish their biogenic from non-biogenic attributes must be established. This topic can be advanced by developing process-based models. A database of images and spectroscopic data that distinguish the suite of bona fide morphological biosignatures from their abiotic mimics will avoid detection of false-positives for life. The use of high-resolution imaging and spectroscopic instruments, in conjunction with an improved knowledge base of the attributes that demonstrate life, will maximize our ability to recognize and assess the biogenicity of extraterrestrial and ancient terrestrial life

    Automated home-cage behavioral phenotyping of mice

    Get PDF
    We describe a trainable computer vision system enabling the automated analysis of complex mouse behaviors. We provide software and a very large manually annotated video database used for training and testing the system. Our system outperforms leading commercial software and performs on par with human scoring, as measured from the ground-truth manual annotations of thousands of clips of freely behaving animals. We show that the home-cage behavior profiles provided by the system is sufficient to accurately predict the strain identity of individual animals in the case of two standard inbred and two non-standard mouse strains. Our software should complement existing sensor-based automated approaches and help develop an adaptable, comprehensive, high-throughput, fine-grained, automated analysis of rodent behavior

    Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors

    Get PDF
    Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express α6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive α6^(L9’S*) receptors. α6^(L9’S) mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by α6 α4* pentamers, as α6^(L9’S) mice lacking α4 subunits displayed essentially normal behavior. In α6^(L9’S) mice, receptor numbers are normal, but loss of α4 subunits leads to fewer and less sensitive α6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires α4 subunits, implicating α6α4β2* nAChRs in α6^(L9’S) mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by α6^(L9’S) nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in α6^(L9’S), but not WT or α4KO/ α6^(L9’S), mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from α6^(L9’S) presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate α6α4β2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system

    Phylogenetic Signal Variation in the Genomes of Medicago (Fabaceae)

    Get PDF
    Genome-scale data offer the opportunity to clarify phylogenetic relationships that are difficult to resolve with few loci, but they can also identify genomic regions with evolutionary history distinct from that of the species history. We collected whole-genome sequence data from 29 taxa in the legume genus Medicago, then aligned these sequences to the Medicago truncatula reference genome to confidently identify 87 596 variable homologous sites. We used this data set to estimate phylogenetic relationships among Medicago species, to investigate the number of sites needed to provide robust phylogenetic estimates and to identify specific genomic regions supporting topologies in conflict with the genome-wide phylogeny. Our full genomic data set resolves relationships within the genus that were previously intractable. Subsampling the data reveals considerable variation in phylogenetic signal and power in smaller subsets of the data. Even when sampling 5000 sites, no random sample of the data supports a topology identical to that of the genome-wide phylogeny. Phylogenetic relationships estimated from 500-site sliding windows revealed genome regions supporting several alternative species relationships among recently diverged taxa, consistent with the expected effects of deep coalescence or introgression in the recent history of Medicago. [Medicago; phylogenomics; whole-genome resequencing.
    corecore