12 research outputs found

    The orbit and stellar masses of the archetype colliding-wind binary WR 140

    Full text link
    We present updated orbital elements for the Wolf-Rayet (WR) binary WR 140 (HD 193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with 160 new radial velocity measurements across the 2016 periastron passage of WR 140. Additionally, four new measurements of the orbital astrometry were collected with the CHARA Array. With these measurements, we derive stellar masses of MWR=10.31±0.45MM_{\rm WR} = 10.31\pm0.45 M_\odot and MO=29.27±1.14MM_{\rm O} = 29.27\pm1.14 M_{\odot}. We also include a discussion of the evolutionary history of this system from the Binary Population and Spectral Synthesis (BPASS) model grid to show that this WR star likely formed primarily through mass loss in the stellar winds, with only a moderate amount of mass lost or transferred through binary interactions.Comment: 10 pages, 5 figure

    Double Sequence Defibrillation for Out-of-hospital Cardiac Arrest: Unlikely Survival

    No full text
    Survival from out-of-hospital cardiac arrest (OHCA) is highest with early defibrillation and immediate, high-quality cardiopulmonary resuscitation. Return of spontaneous circulation (ROSC) is rare in OHCA. The purpose of this discussion and case report is to highlight the use of double sequence defibrillation (DSD) for refractory ventricular fibrillation (RVF). We present a 58-year-old male with RVF who successfully achieved ROSC after 38 minutes using DSD and had a good neurological outcome. DSD has shown promise in many case reports and case series as a means of increasing ROSC and survival rates in OHCA

    Patient Self-Performed Point-of-Care Ultrasound: Using Communication Technologies to Empower Patient Self-Care

    No full text
    Point-of-Care ultrasound (POCUS) is an invaluable tool permitting the understanding of critical physiologic and anatomic details wherever and whenever a patient has a medical need. Thus the application of POCUS has dramatically expanded beyond hospitals to become a portable user-friendly technology in a variety of prehospital settings. Traditional thinking holds that a trained user is required to obtain images, greatly handicapping the scale of potential improvements in individual health assessments. However, as the interpretation of ultrasound images can be accomplished remotely by experts, the paradigm wherein experts guide novices to obtain meaningful images that facilitate remote care is being embraced worldwide. The ultimate extension of this concept is for experts to guide patients to image themselves, enabling secondary disease prevention, home-focused care, and self-empowerment of the individual to manage their own health. This paradigm of remotely telementored self-performed ultrasound (RTMSPUS) was first described for supporting health care on the International Space Station. The TeleMentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group has been investigating the utility of this paradigm for terrestrial use. The technique has particular attractiveness in enabling surveillance of lung health during pandemic scenarios. However, the paradigm has tremendous potential to empower and support nearly any medical question poised in a conscious individual with internet connectivity able to follow the directions of a remote expert. Further studies and development are recommended in all areas of acute and chronic health care

    The orbit and stellar masses of the archetype colliding-wind binary WR 140

    No full text
    International audienceWe present updated orbital elements for the Wolf-Rayet (WR) binary WR 140 (HD 193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with 160 new radial velocity measurements across the 2016 periastron passage of WR 140. Additionally, four new measurements of the orbital astrometry were collected with the CHARA Array. With these measurements, we derive stellar masses of MWR=10.31±0.45MM_{\rm WR} = 10.31\pm 0.45 \, \mathrm{M}_\odot and MO=29.27±1.14MM_{\rm O} = 29.27\pm 1.14 \, \mathrm{M}_{\odot }. We also include a discussion of the evolutionary history of this system from the Binary Population and Spectral Synthesis model grid to show that this WR star likely formed primarily through mass-loss in the stellar winds, with only a moderate amount of mass lost or transferred through binary interactions
    corecore