1,154 research outputs found
Quantum replication at the Heisenberg limit
No process in nature can perfectly clone an arbitrary quantum state. But is
it possible to engineer processes that replicate quantum information with
vanishingly small error? Here we demonstrate the possibility of probabilistic
super-replication phenomena where N equally prepared quantum clocks are
transformed into a much larger number of M nearly perfect replicas, with an
error that rapidly vanishes whenever M is small compared to the square of N.
The quadratic replication rate is the ultimate limit imposed by Quantum
Mechanics to the proliferation of information and is fundamentally linked with
the Heisenberg limit of quantum metrology.Comment: 9 + 16 pages, 2 figures, published versio
Credible, Truthful, and Two-Round (Optimal) Auctions via Cryptographic Commitments
We consider the sale of a single item to multiple buyers by a
revenue-maximizing seller. Recent work of Akbarpour and Li formalizes
\emph{credibility} as an auction desideratum, and prove that the only optimal,
credible, strategyproof auction is the ascending price auction with reserves
(Akbarpour and Li, 2019).
In contrast, when buyers' valuations are MHR, we show that the mild
additional assumption of a cryptographically secure commitment scheme suffices
for a simple \emph{two-round} auction which is optimal, strategyproof, and
credible (even when the number of bidders is only known by the auctioneer).
We extend our analysis to the case when buyer valuations are
-strongly regular for any , up to arbitrary
in credibility. Interestingly, we also prove that this construction cannot be
extended to regular distributions, nor can the be removed with
multiple bidders
Lower bounds to randomized algorithms for graph properties
AbstractFor any property P on n-vertex graphs, let C(P) be the minimum number of edges needed to be examined by any decision tree algorithm for determining P. In 1975 Rivest and Vuillemin settled the Aanderra-Rosenberg Conjecture, proving that C(P)=Ω(n2) for every nontrivial monotone graph property P. An intriguing open question is whether the theorem remains true when randomized algorithms are allowed. In this paper we show that Ω(n(log n)112 edges need to be examined by any randomized algorithm for determining any nontrivial monotone graph property
Investigating the Role of O-GlcNAc Glycosylation in Neurodegeneration
O-GlcNAc glycosylation of nuclear and cytosolic proteins is an essential post-translational modification implicated in many diseases, from cancer to diabetes. Importantly, many important neuronal proteins are also O-GlcNAc modified, and aberrant O-GlcNAcylation of these proteins may contribute to the pathology of neurodegenerative diseases although these mechanisms have not been well defined. Here we investigated the role of O-GlcNAc glycosylation in the brain, utilizing both chemistry and molecular biology to study O-GlcNAc transferase (OGT), the enzyme that adds the sugar modification. To evaluate the role of OGT in adult neurons, we generated a forebrain-specific conditional knockout of OGT (OGT cKO) in mice. Although indistinguishable from wild-type littermates at birth, after three weeks we observe progressive neurodegeneration in OGT cKO mice. Hallmarks of Alzheimer’s disease, including neuronal loss, neuroinflammation, behavioral deficits, hyperphosphorylated tau, and amyloid beta peptide accumulation, are observed. Furthermore, decreases in OGT protein levels were found in human AD brain tissue, suggesting that altered O-GlcNAcylation likely contributes to neurodegenerative diseases in humans. This model is one of a few mouse models that recapitulate AD phenotypes without mutating and overexpressing human tau, amyloid precursor protein, or presenilin, highlighting the essential role of OGT in neurodegenerative pathways.
Given the importance of OGT in the brain, we further investigated the regulation of the OGT enzyme by phosphorylation. We found that phosphorylation of OGT near its C-terminus reduces its activity in cancer cells, and have developed phosphorylation-specific antibodies to aid mechanistic studies. Furthermore, mutation of this phosphorylation site on OGT, followed by overexpression in neurons was shown to enhance neurite outgrowth, demonstrating a functional consequence for this site. Thus phosphorylation of OGT inhibits its activity and enhances neurite outgrowth, and current studies aim to characterize the signaling pathway that regulates OGT phosphorylation in neurons.</p
Carbon dioxide and fruit odor transduction in Drosophila olfactory neurons. What controls their dynamic properties?
We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor
Caspase activation in response to cytotoxic Rana catesbeiana ribonuclease in MCF-7 cells
AbstractRana catesbeiana ribonuclease (RC-RNase) and onconase were proven to own anti-tumor activity. While molecular determinants of onconase-induced cell death have become more explicit, the RC-RNase-induced death pathway remains presently unknown. Here we demonstrated that RC-RNase-induced molecular cascades in caspase-3-deficient MCF-7 cells did not include activation of initiation caspase-8 and -9. Cleavage timing suggested that procaspase-2 and -6 might be processed by active caspase-7 in MCF-7 cells. Caspase-7 was also responsible for cleavage of the poly(ADP-ribose) polymerase. Furthermore, we reported that overexpression of Bcl-XL could raise the survival rates of MCF-7 cells treated with RC-RNase and onconase
Long-range mechanical force enables self-assembly of epithelial tubular patterns
Enabling long-range transport of molecules, tubules are critical for human body homeostasis. One fundamental question in tubule formation is how individual cells coordinate their positioning over long spatial scales, which can be as long as the sizes of tubular organs. Recent studies indicate that type I collagen (COL) is important in the development of epithelial tubules. Nevertheless, how cell–COL interactions contribute to the initiation or the maintenance of long-scale tubular patterns is unclear. Using a two-step process to quantitatively control cell–COL interaction, we show that epithelial cells developed various patterns in response to fine-tuned percentages of COL in ECM. In contrast with conventional thoughts, these patterns were initiated and maintained by traction forces created by cells but not diffusive factors secreted by cells. In particular, COL-dependent transmission of force in the ECM led to long-scale (up to 600 μm) interactions between cells. A mechanical feedback effect was encountered when cells used forces to modify cell positioning and COL distribution and orientations. Such feedback led to a bistability in the formation of linear, tubule-like patterns. Using micro-patterning technique, we further show that the stability of tubule-like patterns depended on the lengths of tubules. Our results suggest a mechanical mechanism that cells can use to initiate and maintain long-scale tubular patterns
- …