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For any property P on n-vertex graphs, let C(P) be the minimum number of edges needed 
to be examined by any decision tree algorithm for determining P. In 1975 Rivest and 
Vuillemin settled the Aanderra-Rosenberg Conjecture, proving that C(P) = Q(d) for every 
nontrivial monotone graph property P. An intriguing open question is whether the theorem 
remains true when randomized algorithms are allowed. In this paper we show that 
Q(n(log n)“‘r’) edges need to be examined by any randomized algorithm for determining any 
nontrivial monotone graph property. ‘t.1 1991 Academic Press. Inc 

1. INTRODUCTION 

Let C(P) be the minimum number of entries that need to be examined in the 
worst case by any algorithm for computing an n-vertex graph property P, when the 
input graph is given as an adjacency matrix. In 1975 Rivest and Vuillemin [6] set- 
tled the Aanderra-Rosenberg Conjecture [7], proving that C(P) = Q(n2) for every 
nontrivial monotone graph property P. An intriguing open problem (see [lo]) is 
whether their result remains true when randomized algorithms are allowed. In fact, 
Richard Karp conjectured (see [S]) that R(P) =G!(n2), where R(P) is the ran- 
domized complexity for deciding P. It was known that R(P) = Q(n), which follows 
from a result of Blum (see [ 81) for general Boolean function evaluations (also 
follows from observations made in Kirkpatrick [3]) that for some inputs the shor- 
test verification needs Q(n) entries to be revealed. In this paper we prove the follow- 
ing result which cannot be obtained by using lower bounds on nondeterministic 
verifications. 

THEOREM 1. R(P) = R(n(log n)‘j2) f or any nontrivial monotone graph property P 
on n vertices. 

We also define and study a search problem, which seeks to identify all the edges 
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in an input graph. The results obtained are used to prove Theorem 1, and are of 
interest by themselves. 

It remains an intriguing question how much randomization helps in determining 
graph properties. At present no example is known for which randomization can 
save more than a factor of 2 over the deterministic case. For the general case of 
Boolean function evaluation, there exist examples by Snir [9], Boppana (see [8]), 
and Saks and Wigderson [8], where the randomized complexity is O(#). 0 < tl < 1, 
while the deterministic complexity is Q(n). For a general discussion of randomized 
complexity, see Yao [lo]. For a study of the randomized of Boolean function 
evaluation, see Saks and Wigderson [S]. Also see Manber and Tompa [4]. Meyer 
auf der Heide [S] and Snir [9] for discussions on other randomized decision tree 
problems. 

2. PRELIMINARIES 

A graph G on n vertices is an n x n matrix (a$) such that aij = 0, au = aii E (0, 1 > 
for all 1 d i, j < n; we sometimes write G = ( V, EG), where I’= { ui , v2, . . . . u,} and 
EG is the edge set { { ui, u,j 1 aii= 1). Two graphs G = (aV), G’ = (a;) are isomorphic 
if there exists a permutation cr on (1, 2, . . . . rr} such that a;= 1 if and only if 
a,,i~O~j~ = 1. Let 3” denote the set of all G on IZ vertices. A graph property (on 
n-vertex graphs) is a function P: $ -+ (0, 1 } such that P(G) = P(G’) if G, G’ are 
isomorphic. We say P is nontrivial if P is not a constant. 

Let G = (au), G’= (ah) E $. We write G d G’ if a, -<a; for all i, j. A graph 
property P on n-vertex graphs is monotone if G < G’ implies P(G) d P(G’). Let Pn 
denote the set of all nontrivial monotone graph properties on n vertices. 

A decision tree algorithm A computes a graph property P for any input G by 
asking a series of queries a,, j, = ?, ailh = ? , . . . . until P(G) can be determined; the 
queries are adaptively chosen depending on the answers to previous queries (see, 
e.g. [6], for more formal descriptions). Without loss of generality, we require that 
the same query not be asked twice. Let cost(A, G) be the number of queries asked by 
A when G is the input. Let -Qlp denote the set of all decision tree algorithms for P. 
The worst case complexity C(P) is min{cost(A) 1 A E SgP}, where cost(A) is defined 
as max{cost(A, G)(Ge%,,:,). 

A randomized decision tree algorithm is a probability distribution CI over J&. The 
expected number of queries asked by c1 for input G is CAEdP LX(A) cost(A, G), 
denoted by h(a, G). The cost of CI is defined as max(h(a, G)(GEF&}. The ran- 
domized complexity R(P) is the minimum cost of any CC. This cost is achieved by 
some CI, as is guaranteed by the Minimax Theorem (see [lo]). 

As an intermediate step for proving our theorem, we need to consider bipartite 
graphs G, which are m x n matrices (ati), where au E (0, 1) for 1 < i < m, 1 6 j < n. 
We sometimes write G= (Vx IV, EG) where V= {vi, v2, . . . . v,}, W= { wl, w2, . . . . IV,}, 
and E, denotes the edge set { (ui, w,) 1 aii = 1 }. Two graphs G = (aii) and G’ = (a;) 
are isomorphic if there exist permutations 0, p on { 1, 2, . . . . m}, { 1, 2, . . . . n>, 
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respectively, such that aij= 1 if and only if aO,lJ,p,,j = 1. Let ZJ,,,,, denote the set of 
all bipartite graphs on Vx W. A bipartite graph property is a function P: $:,,,, -+ 
10, 1 } such that P(G) = P(G’) if G and G’ are isomorphic. 

Let pm,, denote the set of all nontrivial monotone bipartite graph properties on 
I/x W, where the concepts of “nontrivial” and “monotone” are straightforward 
analogs of the corresponding ones for graph properties. We can also develop the 
decision tree model and its randomized version for bipartite graph properties in a 
similar manner. Henceforth we use the same notations, e.g., cost(A, G) etc., as in 
graph properties. 

Theorem 1 follows immediately from the next two propositions. 

PROPOSITION 1. For every P E .c??~‘,,, , R(P) = SZ(n(log n)““) 

PROPOSITION 2. Let E > 0 be any fixed constant. Jf’ every PE ,&,, suti$e.s 
R(P) = SZ(n(log n)‘), then every PE YH satisfies R(P) = SZ(n(log n)“j). 

In Section 3, we present a proof of Proposition 1. We digress in Section 4 to 
define and study a family of search problems which seek to identify all the edges 
in input bipartite graphs. In Section 5, we use the results in Section 4 and an 
embedding technique from [6] to prove Proposition 2. 

3. PROOF OF PROPOSITION 1 

As defined earlier, let ‘$,,+ be the set of all bipartite graph on vertex set Vx W, 
where I’= {u,, u2, . . . . v,}, W= {w,, wz, . . . . w,~ 1. 

DEFINITION 1. Consider any bipartite graph G E $,,.,,. Let d, = degree(i+),) for 
1 Q id n, then the degree sequence a(G) is the sequence (d,,, d,,, . . . . d,,) such that 
d,, 3 diz > . . . 3 d,n and (i, , i,, . . . . i,,) is a permutation of (1, -2, .., n). For any two 
G, 3 G, E %,,,, we write G, < .G, if a(G,) is lexicographically strictly smaller than 
z(Gl). Let e(G) denote the number of edges in G. 

DEFINITION 2. Let PEAR,,,. A bipartite graph GE S,,,, is a minimal graph for P 
if P(G) = 1 and every proper subgraph G’ of G satisfies P( G’) = 0. Let J?‘~ denote 
the set of all minimal graphs for P. For any P E pm.,, let G, denote a lexicographi- 
tally smallest minimal graph for P, i.e., &G,) < d(G) or d(G,) = %(G) for all 
G E j #VP. (There may be many possible choices of G, ; we choose any one once and 
for all.) 

DEFINITION 3. Let PEY~,~. The dual of P is the property QE&,, such that 
Q(G) = 1 if and only if P(G) = 0, where G is the complement of G. 

DEFINITION 4. Let P E pm,,,. We say that P is impartial if P(Kr,,,4,.,,) = 0. 
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Remarks. K,,, is the m x n complete bipartite graph, and K,, is the complete 
graph on n vertices. Later in Section 5, we also use K,, ,+, to denoted the complete 
bipartite graph on Vx W, and K, to denote the complete graph on V. 

LEMMA 1. Let L and H be nonempty bipartite graphs on V x W, and ~9 be the 
family of all bipartite graphs isomorphic to H. Take a random H’, uniformly chosen 
from .%‘, then 

Pr(E,. n E, # @} d lE,l. lE,l 
mn ’ 

Proof: For each edge e E E,, Pr{ e E EHC} = I EJmn. Therefore, 
Pr{E,~nE,#1ZI}~C,.~,Pr{~~~,~}=I~~l~l~,ll~~. I 

LEMMA 2. Let PE Pm,n and Q be the dual of P. Then the following statements are 
true: 

(a) If m 3 4 and P is not impartial, then Q is impartial; 

(b) R(P) = R(Q); 
(c) e(G) .e(G’) 3 mn for all GE Ae,, G’E A&. 

ProoJ Statements (a) and (b) follow immediately from the definitions. To prove 
(c), observe that any H isomorphic to G satisfy E,n EG8 # @2/; we now apply 
Lemma 1 to show that, if (c) is not true, then a random H isomorphic to G has a 
nonzero probability of violating that constraint. 1 

DEFINITION 5. Let A(n) = (log, n)‘j4, p(n) = (log, n)‘j2. 

DEFINITION 6. Let P E .$Fff,“, and A E z$~. Let C’,(A) be the average value of cost 
(A, G) when G is distributed according to probability distribution q on $,,. 

To prove Proposition 1, we construct a q and prove that, for all A EA$, 
C,(A) = S2((n log, n)*j4). This proves Proposition 1, as R(P) 3 C,(A) by a general 
theorem in [ 101. For the rest of this section, we let m = n > 4. We assume that 
PE%,, is impartial; this is done without loss of generality because of Lem- 
ma 2(a)(b). We now prove Proposition 1 by a series of lemmas. Each lemma deals 
with a subclass of bipartite graph prooperties. The proof of Lemma 6 is perhaps the 
most interesting part of the proof of Proposition 1. 

LEMMA 3. If e(G,) 2 A(n)n, then R(P)BA(n)n. 

Proof: Let q be the probability distribution on %m,n defined as q(G) = 1 if 
G = G, and 0 otherwise. For any A E dp, cost(d, GP) 3 e(G,) as G, E J.&‘~. Hence 
C,(A) = cost(A, GP) 3 Il(n)n. 1 
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LEMMA 4. Zfe(G,)<n/,i(n), then R(P)>i(n)n. 

Proof: Let Q be the dual of P. Then by Lemma 1 (c), e(GQ) B mn/e( GP) 3 
A(n)m. By Lemma 3, R(Q) >n(n)m. Thus, R(P) = R(Q) > 3,(n)n by Lemma 2. 1 

We can thus assume in what follows n/i,(n) < e(G,) < E(n)n. Let d,,, = 
max{d,, d,, . . . . d,) where di = degree (w,) in G,. (Recall that a( GP) is the sorted 
permutation of (d,, d2, . . . . d,).) Let N, be any fixed integer large enough such that 
log, N, 3 g4. 

LEMMA 5. Ler n 3 N,. Zfd,,, d p(n), then R(P) >, $A(n)n. 

Proqf: Let s = [ml41 and m’ = m - s. Construct P, E P,,,,,,, from P as described 
below. For each G1 E Ym,,, on vertex set V x W, let G E 9&,, be the graph obtained 
from G, by adding s new vertices to V and sn edges between these vertices and all 
the vertices in W; define P,(G,) = P(G). Clearly, R(P) >, R(P,); also P, is 
monotone. As P is impartial, P,(H) = 0 for the m’ x n empty bipartite graph H. 
Since PI(K,,,,,,) = P(K,,,)= 1, we have thus shown P, to be nontrivial and 
monotone. To prove Lemma 5, we need to prove R( P,) 3 &j.(n)n. 

First we claim that there exists a minimal graph G,, E MP, such that r(G,) < i.(n)n 
and all vertices in G, have degree <p(n). In G,, let a, = degree(u,), and let 
11 2 22, . . . . i, be the indices of the largests a,‘s. Obtain G, E Ym,,, from G, by deleting 
V ,I 9 vi,, . . . . ui, and all the incident edges. Then Pl(G,) = 1 and e(G,) f e(G,) < A(n)n. 
Now, min{a,,, a,2, . . . . a;,} < 4I,(n), since otherwise e(G,) 3 i.(n)n. Thus all vertices L’, 
in G, have degree 6 41(n) <p(n). Bu assumption, all the vertices )v, in G1 also have 
degree f d,,, < p(n). Let G, be any subgraph of G, such that Go E MP,. This G,, 
clearly satisfies all the constraints in the claim. 

If e(G,) <n/I(n), then we can prove R(P,) > A(n)m’ exactly as in Lemma 4. We 
can thus assume that 

1 
e( G,) > 1 II. 

4n 1 
(1) 

Let M= ((p,,, w,,), (okz, w,J, . . . . (ok,, w,,)} be a maximum matching in G,,. Then all 
edges of Go must be incident to some uk, or VV,,. Thus 

e(G,) < 2p(11). t. (2) 

It follows from (1) and (2) that 

/M(=t>,~ 
2(4n))3' 

(3) 

Relabeling the vertices if needed, we can assume that G, is a bipartite graph on 
Vx W, where V= {o,, u2, . . . . urn,}, W= {M’,, u’~, . . . . )v,,) such that {(t’,, w,), 
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(u,, %I, . . . . @to, w,)} is a matching, where t, = rn/2(i(n))3J. Let 9(G,) be the set 
of all bipartite graphs on Vx W isomorphic to G,. We prove 

Inequality (4) implies R(P,) > ini by the following argument: Consider the 
input distribution q defined by q(G) = 1//9(G,)( if GE~(G,,) and 0 otherwise. 
Then, for any A E &,,, , all the inputs from 9(G,) lead to distinct leaves in A. The 
average distance of these leaves to the root is at least log,19(Go)(. Therefore, we 
have 

C,(A) 2 log, IWGo)l 

It remains to prove (4). Let r be the set of all permutations on V. For any CJ E r 
and G E 9,,,,,,, , let aG denote the resulting graph when each uie V is relabeled v,(~). 
Then the group r acts transitively on the set Z E {HI H = oG, for some g E r}. 
Let r, s r be the set of permutations 0 such that aG, = G,. By elementary group 
theory, we have 

I9(G,)l> Isf’I =m 
Iroi 

m’! =- 
v-,1. 

(5) 

As every (ui, wi), 1 <i<t,, is still an edge in rrG, for all (T E r,, we have 

m G bd, . . b,, . (m’ - to)! 

d (An))‘” . (m’ - to)!, 
where bi = degree(w,) in G,. 

From (5) and (6) we obtain 
I 

IWGo)l ‘(p(n))to >-----m’(m’- l)...(m’-to+ 1) 

This proves (4) and completes the proof of Lemma 5. 1 

(6) 
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LEMMA 6. Let n 3 N,. Zf d,,, > p(n), then R(P) 2 $A(n)n. 

Proof. As e(G,)<A(n)n, there are at most Ln/2J of vertices ~1, in G, with 
degree >, 2i(n). Therefore, at least n’= rn/2] of the vertices +v, in G, have 
degree < 22(n). Without loss of generality, we can, by relabeling w;s if needed, 
assume that h, = b,,, > p(n) and b, < 22.(n) for 2 d i < n’, where b, is the degree 
of 141,. 

Let Si be the set of 0, such that (o,, \v,) are edges in Gp, I < idn. (Clearly 
b, = l.SJ). We describe an input distribution of bipartite graphs. Let T, = S, - S,, , 
Tz=S,-S2, and Ti=S,-(Si ,uSi) 36i6n’. 

Algorithm DIST: [comment: generates a random bipartite graph G] 
begin 

(a) Initialize G +- G,; 
(b) Add to G edges (v,, wi) for all vi E T, u Sim , , 2 G i d n’; 
(c) Randomly pick a T,‘c Ti with r4A(n)l (all such T,’ are equally likely to be 

chosen), and delete all edges (vi, wi) for ri E T,‘. 2 < i < n’; 
(d) Add to G edges (vi, i~r) for all u,ES,,,; 
(e) Randomly pick a T,‘s T, with ) T;j = r41(n)] (all such T,’ are equally likely 

to be chosen), and delete all edges (u,, by,) for 11,~ T,‘; 
end 

An output graph G(B) of DIST is specified by the value of ,% = (T,‘, T;, . . . . T,:,). 
(All other quantities are fixed by P.) We need two useful facts. The proof of Fact 1 
utilizes the fact that G, is a lexicographically smallest minimal graph for P. 

Fact 1. Any output G(&?) of DIST satisfies P(G(B)) = 0. 

Fact 2. Let ie [l, n’] be any integer. In any output G(g), if we add to it the 
set of edges (v,, MJ~) for all j E T:, then the resulting graph G,(B) satisfies 
P(G;(B)) = 1. 

To prove Fact 1, we need only show that G(J) < Gp, as G, is by definition a 
lexicographically smallest element in J&‘~. Let b: be the degree of M’( in G(B), 
1 < i< n. It suffices to prove that max{b;, b;, . . . . b:,.) <b,. This can be verified 
easily, as b:f ITjuS,_,I+bi-(T/j d /S,I+IS,~,I+is,l-4i(n)< IS,\ =b, for 
2di<n/2, and b; = IS,uS,,,I - IT,‘( 6 IS,/ + IS,,./ -41(n)< IS,/ = b,. This 
establishes Fact 1. 

To prove Fact 2, let Y,,,. be the set of vertices v, such that (ri, wk) are edges in 
Gi(g), 1 Gk<n. 

Case 1. If i= 1, then Y,,, = Sk for n’ + 1 <k <n and Y,, 1 S, for 1 6 k d n’. 
Therefore, G, is a subgraph of G,(B). Hence P(G,(g)) 3 P(G,) = 1. 
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Case 2. If26i<n’, then Yi,k=Skfor n’+ 1 dk<n, Yr,k?Sk for 2<k<i, and 
the following is true: 

Yi,k 1 Sk - 1 for ickdn’, 

Y,. 1 2 s,,. 

It follows that Gi(@) contains a subgraph that is isomorphic to G,. Thus 
P(G,(@)) > P(G,) = 1. This proves Fact 2. 

We now complete the proof of Lemma 6. Let A EJ&. For any G(B) as 
input graph to A, let L9 be the set of all entries of the incidence matrix of G(g) 
that are examined by A. Facts 1 and 2 imply that, for each 1~ i< n’, 
((Uj, wf)IUjET,‘}nL,@#f* I n other words, A must discover at least one of the 
missing edges in {(vi, wi) ) v, E Tj’} for every 1 d i < n’. 

Consider T/, 1 < i < n’, as independent random variables. Each T/ is a uniformly 
chosen random subset of T,. Note that ( TJ > /Sij -4A(n) B p(n) -4A(n), and 
IT,‘J<4A(n)+l. Let Xi={(yi,~i)~~~~Ti}nL,. Clearly, forO<l<JTil-IT~l, 

It follows that 

EOXiO= C Pr{lJfil >l) 
I>0 

ITI + 1 =--- 
ITi’1 + 1 
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Thus, 

This proves that for each A E dp, C,(A) >/ &I(n)n. This proves Lemma 6. 1 

We have completed the proof of Proposition 1. 

4. IDENTIFICATION PROBLEM FOR GRAPHS 

In this section we derive two results for a special type of search problems. These 
results are of interest by themselves, and are used in Section 5 to prove Proposi- 
tion 2. Let B E 3,,n be a family of bipartite graphs. The identification problem for 9 
is to locate and verify, for any given input G = (aii) E 9, all the edges in G. In our 
model, an algorithm B is a binary decision tree with queries of the form “a,, = ?” 
at its internal nodes, such that any input G = (ail) E 9 will follow in B a path along 
which all the nonzero ai;s will be queried. As in the case for algorithms in dp, we 
use cost(B, G) and C,(B) to denote the cost and the average cost with respect to 
distribution q. 

We are interested in two particular classes of identification problems. We 
first introduce some notations. Let I/= { ui 11 < i 6 ml } and W = {w, 11 < j 6 ml ). 
be disjoint sets, where m, I are positive integers. Call the subsets V, = 
lv(i I)~+~I 1 ds<m), wj= (W~,-I)~+~ 11 <s f m> the ith and the jth blocks of 
V, W. We consider bipartite graphs G = (a,) on the vertex set I/x W. Let Q, denote 
the set of all queries “as, = ?,, with u, E Vi, u’, E W,, where 1 d i, j d 1. 

The first class of problems is parametrized by a triplet (m, I, H), where m, I are 
positive integers and H is an m by m nonempty bipartite graph, Let 2 be the set 
of all m by m bipartite graphs isomorphic to H. Let 9(m, 1, H) c CC?,,,, where n = ml, 
be the set { F,,j.Hj 1 1 < i, j < 1, H’ E X}, where F,, j,Nz denote the bipartite graph on 
the vertex set Vx W such that (a) the induced subgraph between Vi and W, is H’, 
and (b) there are no other edges. Let p = IE,l/m’, and q be the uniform probability 
distribution over 9(m, 1, H). 

THEOREM 2. There exists a constant 3, > 0 such that any algorithm B which solve.s 
the identification problem for 9(m, 1, H) must satiQj> c’,(B) 2 il’/p. 

We first derive a lemma. Let k > 0, and B be any decision tree which, for every 
input (.x1, x2, . . . . xk) E (0, 1 }k, halts either upon finding an x, = 1 or having found 
xi = 0 for all i. Let q be a probability distribution on { 0, 1 } k. For each 1 f i ,< k, let 
qi be the probability of xi= 1, for a random (x,, x2, . . . . x,) distributed according 
to q. Let b>O. 
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LEMMA 7. Ifqi< b for all i, then c,(B) 3 mm{ 1/2b, k/2}. 

Prooj To fix the notation, let xi,, xjz, . . . . ,xjk be the sequence of entries examined 
by B when the k-tuple (0, 0, . . . . 0) is the input. 

Now, consider a random input (x,, x2, . . . . xk) distributed according to q, and let 
Z be the random variable corresponding to the number of entries examined by B. 
Then E(Z) = Ciao cli, where ai = Pr{ Z > i}. Clearly, 

a,=l-Pr{316s<isuchthatxjS=1} 

>I-- 1 Pr{xiV=lj 
lCs<i 

> 1 -ib. 

Writing t = min(L l/b J, k}, we have 

E(Z)> 1 (1-ib) 
O<i<f 

=(t+ 1)-bt(t+ 1)/2 

> (t + 1)/2. 

This proves Lemma 7. 1 

Theorem 2 is an immediate consequence of Lemma 7 with k = m’12 and b = p/12; 
1/2b d k/2 in this case. 

Before discussing the second class of identification problems, we prove an 
auxiliary result. Let H be an m x m bipartite graph with r > 0 edges, and 2 be the 
family of all bipartite graphs isomorphic to H. Let t = Lm’/( lOOOr) J. Let A be a 
decision-tree procedure that tries to locate at least one edge of any input H’ E Y?, 
by asking an adaptive series of t queries “ai, j, = ?“, “aili = ?,,, . . . . “a,,j, = ?,,. Now, 
consider a random input H’ uniformly chosen from A?. Let [, be the probability 
that A succeeds in receiving at least one positive answer, i.e. some query receives an 
answer “aL j> = 1”. 

LEMMA 8. 5, < l/500. 

Proof: If r > m’/lOOO, then t = 0 and [, =O. We can thus assume that 
0 < p < l/1000, where p = r/m2. For 1 6 k 6 t, let X, be the event that aifjs = 0 for all 
1 <s<k; let Y, be the event that aikjk= 1. Let a,=Pr{X,} and yk=Pr{ Y,jX,_,} 
for 1 < k d t, where we interpret y, as Pr{ Y, }. We prove inductively that, for 
l<kdt, 

elk 2 4991500 and Yk c 2P. (7) 

For k = 1, observe that the choice of the first query is uniquely determined. Using 
Lemma1 with JE,I=l, we have y1=Pr{ai,j,=1}<r/m2<2p, and cr,=l-y,3 
4991500. 
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Let 1 <k d t, and assume that we have proved (7) for all values less than k. 
We prove (7) for the value k. When X, . , occurs, the next query is uniquely 
determined, say, “aji. = ?‘. Utilizing Lemma 1 and the inductive hypothesis c(~ , z 
499/500, we have 

Yk= 
Pr(Y, AX,..,) 

Pr{X, -,} 

< 
Pr{a,, = 1 ) 

Mk -I 

d 2p. 

Also, we have 

cr,=l-Pr{Y,}-Pr{X,}Pr{YzIX,}-Pr{XZ}Pr{Y31X~)- ‘.. 

-Pr{Xk-,) PriLlL,) 

31 -Pr{Y,}-Pr{Y,(X,f-Pr{Y,IX,}- ... -PrjY,/X, ,) 

=l-(y,+y,+ “.+yk) 

2 1 - 2pk 

3 4991500. 

This completes the inductive proof of (7). Lemma 8 follows immediately from (7), 
since [, = 1 - gC. 1 

The second class of identification problems is parametrized by a triplet 
(m, I, A’“‘), where m, I > 0 are integers and A(‘) = (H’,O’, H$(“, . . . . HjO’) is a sequence 
of m by m nonempty bipartite graphs. Let yt: be the set of all m by m bipartite 
graphs isomorphic to Hi’), and let 2 = & x X1 x . . . x &. Let r be the set of 
all permutations on (1, 2, . . . . l). For each Z = (0, fi), where GE r and 
8= (H,, Hz, . . . . H,) E 2, let F? be the bipartite graph on V x W such that, for 
every i, the induced subgraph between Vi and WgCij is Hi, and that there are no 
other edges in F,;. Let &(m, 1, A”‘)= {F,~?E (r, 2)). Let p=maxi{ /EH;nl(/m2), 
and q be the uniform probability distribution over &(m, I, ii’“‘). 

THEOREM 3. There exists a constant A’ > 0 such that uny algorithm B which solws 
the identification problem ,for &(m, I, f?(O)) satisfies C,(B) >, j.‘121p. 

Proof. We first give the intuition behind the proof. For an input F,,,ni,, B must 
discover at least one edge between V, and WoCi, for each 1 d i < 1. By Lemma 8, B 
typically needs to examine sZ( l/p) entries in Vi x IV,,,, for each i. Furthermore, since 
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d is arbitrary, for a typical i, B must search about Q(1) blocks of entries of the form 
Vi x Wj to have included the block Vi x WoCiJ in the search. Thus, for a typical i, B 
needs to examine sZ(l/p) entries in Vi x W. This implies the assertion in Theorem 3. 
To carry out the proof, consider the path in B followed by the input F,,,R). We call 
a query in Q, (or precisely, the node asking this query) primary critical, if so far 
B has examined !Z2( l/p) entries in Vi x W, without finding any edge. Our approach 
is to prove that a typical input F(,,w, encounters Q(12) primary critical nodes along 
its traversed path in B. The argument is developed in two stages. First, we find in 
a specific way (Lemma 9) a “typical A” such that the expected running time (called 
S(A)) for input FcO,~) for a random CT provides a good estimate of C,(B). Then 
we derive a lower bound to S(A) (Lemmas 10 and 11) using the special property 
defining i?: 

For any internal node u of B, we say that u is of type (i, j), if the query at u is 
contained in Q,. Let A= (H,, H,, . . . . H,) be any element in 2. For any internal 
node u of B, if its type is (i, j), let L(U) be the set of queries in Q, that are asked 
along the path from the root down to and including U; suppose that the query at 
2.4 is “asB = ?‘, then we call u a critical node (with respect to A), if (a) (Hi)dr = 1 
where 16 d, e < m and CI = im + d, /I = jm + e, and (b) ( Hi)S,r = 0 for all queries 
LLarm+s,jm+,= ?,, in L(U) other than the query “aa,p= ?“. When u is critical, we call 
u a primary node if IL(u)[ > l/lOOOp, and a secondary node otherwise. In the above 
definitions, a critical node u is also called a o-critical node (with respect to I?), for 
any 0 E r satisfying a(i) = j; similarly we use the terms primary and secondary 
a-critical nodes. Note that a node may be c-critical for many different 0’s. 

Consider the path A (a, 8) in B traversed by input F(,,n). Let N,(a, R), N,(a, R) 
be the number of primary and secondary critical nodes (with respect to t?) on path 
d(a, R). Let r,(c, p), r2( c, Z?) be the number of primary and secondary a-critical 
nodes (with respect to R) on path d(a, 8). 

For any f7~ X, let 

s(p) = +j c cost(B, F,,,A,). (8) 
aEr 

LEMMA 9. There exist I?E s?? and r’ E r with /r’l 3 $r( such that 

c’,(B) 2 $S(@, 

and for all u E r’, 

(9) 

r,(a, 8) > $$l. (10) 

Choose any fi and r’ satisfying the conditions in Lemma 9. Let r” = (0 1 B E r’, 
N,(o, R) > 12/5000}. 

LEMMA 10. For all d E r”, cost(B, FCg,H)) is at least N,(o, A)/( 1OOOp). 

LEMMA 11. /r”j b i/PI. 
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Assume for the moment that Lemmas 9-l 1 have been proved. We show how to 
prove Theorem 3. From Lemma 10 and Lemma 11, we have, with fl’ = 10 ‘, 

As If’1 >&lr(, we obtain from (8), 

S(R) > p”2. 
’ lop 

(11) 

It follows from (9) and (11) that 

If (B)>B’I’. Y ’ 4op 

Thus, to complete the proof of Theorem 3, we only need to establish 
Lemmas 9911. We first state two elementary facts. 

Fact 3. Let CJ E r and 8’ E 2. Then along the path d(cr, w’), no two critical 
nodes with respect to I? are of the same type. Furthermore, there are exactly I 
a-critical nodes with respect to I?‘, one of type (i, a(i)) for each 1 d i 6 1. 

Fact 4. Let oerand R’E,%. Then N,(a, /?‘)+N,(cr, fi’)</‘, and r,(a, 8!)+ 
r,(a, 8’) = 1. 

Fact 3 is an elementary consequence of the definition of critical nodes. Fact 4 
follows from Fact 3. 

Proof of Lemma 9. Take a random ii’ E 2, and for each (T E IY let Z, denote 
the event that r ,(a, 17’) > $$l. Let Z = I,, ,. Z,. We claim that 

(12) 

Let 0 E f. To prove (12), it suffices to show that E(Z,) > $j. By Fact 3, for any 
input Fco,~,I, the path d(o, I?‘) in B contains exactly I o-critical nodes, one of type 
(i, o(i)) for each 1 6 i < II, with respect to H’; let ~~(0, 8’) denote the a-critical node 
of type (i, a(i)), i.e., the node at which the first edge between Vi and WoCrj is dis- 
covered. Take a random R’, and let Z,,, be the event that U,(CT, I?‘) is a primary 
critical node with respect to R’. By Lemma 8, if we lix the values of all components 
H,! of fi’ with j # i and pick a random Hl, then the probability of discovering an 
edge between the ith block of I/ and the a(i)th block of W in no more than 
Ll/lOOOp] queries in Q, is at most l/500. This shows that Pr{ lZ,,;) d l/500. 
Thus, Pr { Z,.,} 3 499/500. 
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Let T,,=C l<i<,Zg,i. Then E(T,)a$$l. Observe that E(Z,)=Pr{T,>$$/}, 
We conclude that E(Z,) 2 E, since otherwise 

This proves (12). 
It follows from (12) that 

Now, for a random p’ E 2, we have clearly E(S(A’)) = C,(B). This implies that 

Pr{S(P)G4C,(B)} 2:. l 

Lemma 9 follows from (13) and (14). 

Proof of Lemma 10. Preceding each primary critical node of type (i, j), there are 
at least rl/lOOOpl- 1 nodes with queries in Q, along the path d(o, A). Fact 3 
guarantees that there are N,(a, A) primary critical nodes of distinctly different 
types. This proves Lemma 10. 1 

Proof of Lemma 11, Keep in mind that fi has been chosen. Consider the set of 
paths {d(o, A)1 OCR’}. Clearly d(a, ii) #d(a’, fi) if afa’. To each d(o, fi), we 
associate an (1+ 1 )-tuple <(a, 8) = (k, i,, i,, . . . . i,, j,, j,, . . . . j,-,) as described 
below. In what follows, “critical nodes” will mean critical nodes with respect to fi; 
the same is true for o-critical nodes, primary critical nodes, etc. 

For any g E r’, let Y,, Y,, . . . . Y~,(~,R) be the sequence of primary critical nodes 
along d(a, A), and zl, z2, . . . . z,,(,,R) be the sequence of secondary critical nodes 
along d(a, i7); let yi,, y,,, . . . . y, be the subsequence consisting of all the primary 
a-critical nodes, and zj, ,, zj2, . . . . z~,~~ be the subsequence consisting of all the 
secondary a-critical nodes. Define ((0, B) = (k, i,, i,, . . . . i,, j,, j2, . . . . j,-,). Note 
that 0 <k d Z, 1 6 i, d N,(a, A), and 1 <j, < N,(o, B) for all S, t. 

Fact 5. If 0 and 6’ are distinct elements in r’, then ((a, A) # <(a’, i7). 

Given the value of t(a, A) = (k, i,, i,, . . . . jkk, j,, j,, . . . . j,-,), we show that there is 
a unique path in B that gives rise to <(o, H). Starting from the root, whenever we 
encounter an internal node U, the only possible branch to take is clearly determined 
by the following rules: (a) if u is a critical node, t;(o, A)= (k, i,, i,, . . . . i,, 
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.j, , jz, . . . . j, k) tells us whether u is a-critical, since we can count how many primary 
and secondary critical nodes have been seen along the path so far; we take the 
branch labeled by 1 if and only if u is a-critical; (b) if u is not critical, and suppose 
the query at u is in Q,, then either we have so far not seen a o-critical node of type 
(i, j), in which case we should take the O-branch, or we have already seen a 
o-critical node of type (i, j), in which case we know that the induced subgraph of 
input between the ith block of I/ and the jth block of W is H,, and we can decide 
from H, which branch to take. This determines the path and thus the c uniquely. 
This proves Fact 5. 

From Fact 5, we can find an upper bound to Ir’- r”] by counting the number 
of possible values of ((0, A) = (k, i,, i,, . . . . i,, j,, jr, . . . . ,j, mk) for rs E r’- r”. Let 
u = r991jlOOl and h = Ll’jSOOO]. Inequality (10) says that k > a, Fact 4 says that 
j, 6 1’ for all t, and the constraint that N, (a, A) d 12/5000 says that i, d h for all s. 
It follows that 

/,k /“l-k 
-___ 

‘<,<;<,k!(l-k)! . . 

= 

G c 

I 

. . 0 

121 

rr<k<l k (5000)kl! 

oc 
I 

0 

/“I 

u<k<l k (5000)“1! . . 

Now, (I!)’ 2 (f/e)” for all I>, 1. That means 12’/(1!)<e”l!. Noting that 
If’1 3 Irl/lO, we have 

This proves Lemma 11. 1 
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5. PROOF OF PROPOSITION 2 

The proof uses results from the last section and a technique of finding embedded 
bipartite graph properties from graph properties used by Rivest and Vuillemin [6]. 
As in [6], we use the notation A + B+ C for the graph obtained from taking the 
disjoint union of graphs A, B, C (with disjoint vertex sets); for any integer j, 
jA means A+A+ ... + A j times. Let NA be any fixed integer that satisfies 
log, N; 3 20 + r103’&]. Thus, (log, n)&j3 2 10 for all n 3 N78. 

We first prove R(P) = SZ(n(log n)‘13) when n = 2k with integral k and n > Nh/8. 
Let L,=2k-iKzt for 0 <i< k. Since PEAR’,, there exists 06 i,< k such that 
P( L,) = 0 and P(L, + I ) = 1. (Such a sequence was employed in [6] ). We consider 
two cases depending on the value of 2”. 

Suppose 2ioan/((log,n)2”‘3). Let Hj=jKzfo+, + (2k-io-2j) K,,, for j=O, 1, 2, . . . . 
2k-‘o-‘. Thus H, = L,, and HZk-,,-l = L,, 1. Since P E PH’,, there exists 0 <j, < 2k-io-’ 
such that P(H,,)=O and P(H,+,)= 1. Write H,=J+Z1+Z2, H,,, =J+Z,, 
where I,, Z2 are complete graphs on disjoint vertex sets V,, V, with 
I V,I = I V21 = 2’O, and Z3 is the complete graph on V, u V2. 

Let Q be the bipartite graph property on the vertex set V, x V2 obtained from P 
by setting all the edges as present or absent exactly as H, except for the ones in 
l’, x I’,. Clearly, R(P) 3 R(Q). As Q is nontrivial and monotone, we have by 
assumption R(Q) = 52(2’O(log 2’O)“) = S2(n(log n)‘j3). 

We now consider the case 

(15) 

Let V denote the disjoint union of sets I’;, 1 < i < I e 2k-i0-1, where ) Vi1 = 2”; 
similarly let W= u1 G iGl Wi. Let xii,,ub be Boolean variables, where 1 < i, j< I and 
1 < a, b d 2’O. Consider the sequence (x~,~~) of I, variables x+~ arranged in 
increasing lexicographical order of their indices (i, j, a, b), where I0 = 1222io. For any 
truth assignment 2.~ (0, l}” to (xijab), let GIe $n denote the graph on the vertex 
set Vu W defined as follows: each Vi is a clique and each Wi is a clique for 1 < i < 1. 
If xij,Ub = 1 then there is an edge between ath node in Vi and bth node in W,. 

We later construct a probability distribution q over 9$, with q(G) = 0 unless 
G = G, for some 1, and prove that c‘,(A) = SZ(n(log, n)‘j3) for all A E dP. To help 
describe q, we first construct a G, satisfying P(G,) = 1 with a certain minimality 
property. 

Let f(O) denote the truth assignment to (xiiab) with all xij,rrh =O. Let .%(I) be the 
truth assignment where xii,a6 = 1 if i=j, and xij,,ab = 0 otherwise. Then G,(O) = L, 
and G,u, = L, + 1 ; hence P(G.f.(~,)=O and P(G.?(l,)= 1. Let X= (212.~ (0, l}‘“, 
z<I”’ P(G-)= 1, and P(GI)=O for all %J?}. Each Gf, where VEX, is called an 
induced’ minikal graph for P. Let # (a) denote the number of l’s in 1. The next 
statement is clearly true. 
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Fact 6. If there is an E E X with # (2) > n(log, n)LS’3, then R(P) = Q(n(log, nYf3). 

We can thus assume that, for all 2 E X, 

# (2) < n(log, Pz)? (16) 

For each .?=(x,,,,,)EX, let J,(~)={(a,h)lx,,,,,=l) for l<i<l. Let 
44 = (a, 3 R2, “‘, c( ) , denote the multi-set { IJ,(a)l, IJ2(Z)(, . . . . IJ,(Z)(} sorted into 
decreasing order, say, tll > a, > . . . > CI,() > 0, and c(; = 0 for s(Z) < i 6 I. Clearly, 
s(Z) > 0. Let .? = ( yii,ub) E X be chosen such that r( 4;) < x(Z) lexicographically for 
all 2’~ X. We can choose F so that we have X, = jJj(j)i for 1 <i< I where 
(x,, a23 . ..3 c(,) = Ty( j). Clearly, 

#(L’)=a,+a,+ ... +‘Y,,p,. (17) 

Let m = 2’O, and 

#(.a P= 
G.9 . 

(18) 

We choose our distribution q in several different depending on the value of p 
and m. 

LEMMA 12. If p > 4m(log, n)‘13, then R(P) = SZ(n(log, n)E,3). 

Proof: From (16) and (18) 

s( jq < $1. (19) 

From (17) and (18) 

aI 2 4m(log, H)“~. (20) 

We now define a probability distribution q on $ by generating a random G E ?3,, . 
Let Z= (z,,,,) be defined as follows for all a, h: z,,,“~= ~~~~~~~ for ie { 1, s(j) + 1, 
s(J)+2 ,...) I}, Zti&= yij,oh for 2 d i<s( y), and z,,,~~ = 0 otherwise. Now pick a 
random sequence [=(a,+ h,), (~,~~,+,, bsf,,+,), (~Fo’~+2, h.,t.i,,2), . . . . (a,, h,), where 
each (a,, hi) is uniformly and independently chosen from J1(J). Let Z(c) be 
obtained from 5 = (z~~,~~) by setting z;~,~,~, =0 for iE 11, s(j)+ l,s(j)+2, . . . . 1). 
Let the graph G,(:, be the random G E 3,. This defines q. 

Let A E *tip. Then at each leaf p of A, the sequence of queries asked along the 
path from the root to p must include “z~~,~~~, = ?” for every iE { 1, s(J) + 1, 
s(j) + 2, . ..) 1 }. This is because P(G,,,,) = 0 for all [ (since S is a lexicographically 
smallest element of X), while for any 5’ that differs from 2(l) only in some z,,,+,, 
one has P(G,,) = 1. Clearly, for a random G distributed according to q, we have 
cy( A) 2 C,,( i) < iG, E(Di), where Di is the random variable denoting the number of 

571.42.3-3 
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queries of the type “z~~,.~ = ?’ that have been asked before the query “z,,,~,~, = ?’ is 
asked. Clearly, 

Thus, C,(A) 2 (Z-s(j)) $(l + a,) = O(n(log, n)“j3) by (19) and (20). This proves 
Lemma 12. 1 

LEMMA 13. Zfp < 4m(log, n)‘13, rhen R(P) = Q(n(log, n)‘13). 

ProoJ: We construct probability distributions q over $, and show that any 
algorithms A for determining P must have C,(A) = Q(n(log, n)‘13). We distinguish 
two cases. First consider the case s(j) < l/2. Let H = (huh) be the m by m bipartite 
graph corresponding to the edge set Jycl:,( j), i.e., h,, = y,,-cjs(L’j,ab for 1 d a, b 6 m. 
Let X be the set of all m by m bipartite graphs H’ isomorphic to H. For each 
[=(s,t,H’), wheres(j)<s, t<IandH’=(h~,)~X’,defineP([)=(x,,,,)~(O,l}’” 
as 

Xii,ab = Yii,uh for 1 <i<s(j), 1 da, b<m 

xs~. ab = hbb for l<a, b<m 

+zb=o otherwise. 

The distribution q over $ is generated by taking a random [ = (s, t, H’), where 
each of s, t, H’ is uniformly and independently chosen from its domain, and let GicSj 
be the random G to be generated. If we restrict our attention to the variables xij& 
with s(j) < i, j 6 1 and 1 < aI, b <m, the problem for determining P now becomes 
the identification problem for 9(m, (I-s(j) + l), H). In fact, any algorithm 
A E&$ naturally induces an algorithm B for the identification problem 
9(m, (I- s(j) + l), H) such that C,,,(B) $ C,(A), where q. is the uniform distribu- 
tion for 5@ discussed in Section 4. By Theorem 2, we have 

C,,(B) = a((/- 4.9 + 1 )*m2/lEHI) 

= Q(l’m”/p) 

= Q(n*/(m(log ~2)“‘)). 

Since m = O(n/(log n)*&13) by (15), we have proved Lemma 13 for this case. 
Now consider the case s(j) > l/2. Let s0 = rs( j)/21. For each so < i < s( y”), let Hi 

denote the m by m bipartite graph corresponding to the edge set J,(p); clearly, 
(E,I < 2~. Let & be the set of all m by m bipartite graphs isomorphic to Hi. 
Let r be the set of all permutations of (so, so+ 1, . . . . s(j)). For each 
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i = (CJ., H.i,, K,, , , . . . . H&,), where OET and H,‘E.&, define ?(~)=(x,~,,,)E(O, 1)“’ 
as 

x rl,oh = 4’ii.d for l<i<s,, l<a,h<m 
x rri(i),ub = (WL for sO<ii.s(J), 1 da, hdm 

xi, Oh = 0 otherwise. 

The distribution q over 3, is generated by taking a random <, where each compo- 
nent of i is uniformly and independently chosen from its domain, and let G,,;, be 
the random G to be generated. If we restrict our attention to the variables x+~ with 
so 6 i, j < s( 9) and 1 < a, h d m, the problem for determining P now becomes the 
identification problem for &‘(m, (s( j7) -so + l), (H,,, H,, , , . . . . H,,,,)) with the 
uniform distribution discussed in Section 4. Let p = max, { 1 E,, l/m’\ ). Then 
p d 2,u/m2. It follows then from Theorem 3 that, for every algorithm A E ~2~. we 
have 

q.4 =Q(M.F) -so + 1 ,‘;‘P) 
= Q(l’m’/p) 
= !Z(n2/(m(log n)“‘3)). 

Since m = O(n/log n)2”‘3) by (15), we have proved Lemma 13 for this last case. This 
completes the proof of Lemma 13. 1 

We have proved that, when n b N78 is a power of 2, R(P) = G(n log, n)E,3). We 
now prove it for all integers n 2 N& We divide the discussion into two cases. 

First, suppose it = 2k + 2’+ t, where 0 < t < 2’ and I < k - 2. Let V be the disjoint 
union of V,. VI, I’, with IV,I=IV,I=2”-‘, 1V3/=2’+t. Let P be a nontrivial 
monotone graph property on the vertex set V’. Consider the following sequence of 
graphs on vertex set V: Go is the empty graph, G, = KV2” ,,3, G, = K,, u G, , 
G,=K vixv,vG2, Gq=Kv=Kv,.vzuG3. (Here union and equality on graphs 
only refer to their edge sets.) Let i be the minimum i such that P(G,) = 1. 

If i = 1, then by monotonicity P(K 1,, v ,,,) = 1. Let Q, be the property induced on 
the vertex set V, u V, defined by Q( ( V, u I’,, E)) = P( ( I’, E)). Then Q1 is a non- 
trivial and monotone property on 2’-vertex graphs. Thus, R(P) 3 R(Q, ) = 
s2(2”(log 2”)‘..‘3) = Q(n(log n)“‘). 

If i= 2, let Qz be the property induced on the vertex set V, defined by 
Q(( V, , E)) = P(( V, E’)), where E' is the union of E and all the edges in G, . Then 
Q7 is a nontrivial and monotone property on 2k ‘-vertex graphs. Thus, 
R(P) 2 R(Q,) = 12(2k -'(log 2k-‘)E’3) = n(n(log n)‘j3). 

If in { 3,4}, let Qi be the bipartite graph property on vertex set Vi x V,, defined 
by Q,((J’, x v,, E))=P((K El)) w h ere El is the union of E and all the edges in 
Gi 1. Then Q; is nontrivial and monotone. Thus by Proposition I, 
R(P) = R(Q) = S2(2& ‘(log 2k ~ ‘)‘) = n(n log n)‘:). 
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The only other case is n = 2k + 2k-’ + t, where 0 < t < 2k ~ I. Let I’ be the disjoint 
union of Vi, v/2, V, with 1 I’,/ = 1 V2/ =2k-‘+ t, JV,I =2kp’- t. Note that 
( V, u V3I = 2k. Consider the sequence of graphs: Go is the empty graph, Gi = K,,,, 
G,=Kv,,v,uG,, G,=Kv,..,uG,, G4 = K,. Let i be the minimum i such that 
P(G,) = 1. An analysis similar to that for the previous case n = 2k + 2’+ t then leads 
to R(P) = Q(n(log n)‘j3). This completes the proof of Proposition 2. 

6. REMARKS 

The determination of randomized complexity for Boolean properties is a major 
topic in complexity theory with many interesting unresolved questions. We mention 
just a few that have a direct bearing on the present dicussion. 

1. It remains a tantalizing question whether the randomized complexity of 
every nontrivial monotone graph property is of order Q(d). Valerie King [2] has 
improved our bound from B(n(log n)“‘*) to 12(n5j4), and recently, Peter Hajnal [l] 
has improved it further to Q(n4’3). Perhaps the next step is to prove an Q(n’) lower 
bound to the randomized complexity for monotone bipartite graph properties. 

2. By how much smaller can the randomized complexity r= R(f) be than 
the deterministic complexity m = D(f) for any Boolean function f? Saks and 
Wigderson [S] conjectured that r = B m.753”’ 
which is nonlinear in fi, i.e. r = Q( ,/L 

). Could one prove at least a bound 
m/z(m)) with h(m) + co? Such a result would 

be very exciting even just for monotone functions. 
3. How much can randomization help in the determination of any (monotone 

and nonmonotone) graph property? As mentioned in the introduction, we know 
that r = ii’(&), in the notation of the last paragraph. Can one prove that 
r = Q(mh(m)) with h(m) -+ co? 
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