24 research outputs found
Circadian Biology: A 2.5 Billion Year Old Clock
SummaryA recent study suggests that circadian clocks may have evolved at the time of the Great Oxidation Event 2.5 billion years ago in order to drive detoxification of reactive oxygen species
REVERBa couples the circadian clock to hepatic glucocorticoid action.
The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatosis induced by chronic GC administration. Our results reveal a mechanism by which the circadian clock acts through REVERBa in liver on elements bound by HNF4A/HNF6 to direct GR action on energy metabolism
Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals
Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3+) or short (CHGA+) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation
Circannual Clocks: Annual Timers Unraveled in Sheep
A recent study has revealed new insight into how the annual clock may drive seasonal hormone rhythms in mammals; the data suggest that melatonin-receptor-containing cells in the pituitary gland may operate as key calendar cells, transmitting seasonal temporal information to the endocrine system
Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters
The tau mutation in Syrian hamsters (Mesocricetus auratus) is phenotypically expressed in a period of the circadian rhythm of about 20 h in homozygotes (SS) and about 22 h in heterozygotes (S+). The authors investigate whether this well-defined model for variation in circadian period exhibits associated changes in energy metabolism. In hamsters of the three genotypes (SS, S+, and wild type [WT]), oxygen consumption measurements were performed at 28 degrees C (thermoneutral), 18 degrees C, and (after acclimatization) 10 degrees C. After correction for body mass, SS tau mutant hamsters had a higher overall metabolic rate (average oxygen consumption per hour over 24 h) and a higher resting metabolic rate (the lowest 30-min oxygen consumption in the subjective day) than did WT hamsters at all ambient temperatures. S+ hamsters were intermediate in both after taking body mass into account. The differences in metabolism among the three genotypes indicate that the increase in metabolic rate was statistically indistinguishable from a proportional increase in circadian frequency. The oxygen consumption totals per circadian cycle (24 h for WT, 22 h for S+, and 20 h for SS mutants) were not statistically different among the genotypes after correcting for body mass. The possible roles of pleiotropic effects, of linkage to genes involved in growth and metabolism and of early ontogenetic influences are briefly discussed
Metabolic Rate Changes Proportionally to Circadian Frequency in tau Mutant Syrian Hamsters
The tau mutation in Syrian hamsters (Mesocricetus auratus) is phenotypically expressed in a period of the circadian rhythm of about 20 h in homozygotes (SS) and about 22 h in heterozygotes (S+). The authors investigate whether this well-defined model for variation in circadian period exhibits associated changes in energy metabolism. In hamsters of the three genotypes (SS, S+, and wild type [WT]), oxygen consumption measurements were performed at 28°C (thermoneutral), 18°C, and (after acclimatization) 10°C. After correction for body mass, SS tau mutant hamsters had a higher overall metabolic rate (average oxygen consumption per hour over 24 h) and a higher resting metabolic rate (the lowest 30-min oxygen consumption in the subjective day) than did WT hamsters at all ambient temperatures. S+ hamsters were intermediate in both after taking body mass into account. The differences in metabolism among the three genotypes indicate that the increase in metabolic rate was statistically indistinguishable from a proportional increase in circadian frequency. The oxygen consumption totals per circadian cycle (24 h for WT, 22 h for S+, and 20 h for SS mutants) were not statistically different among the genotypes after correcting for body mass. The possible roles of pleiotropic effects, of linkage to genes involved in growth and metabolism, and of early ontogenetic influences are briefly discussed.